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Summary: 

In the note entitled "Another approach to relativity" we defined the laws of gravitation based on energy 

considerations. The purpose of this note is first to present a model of the gravitational field that is consistent 

with these laws. 

We attribute a physical reality to the gravitational field, considered as a distribution of energy throughout space. 

Gravitational interaction consists of an exchange of energy between gravitational sources and the global field 

created by these sources. 

The gravitational field model includes a mechanism for refreshing the field, constantly adapting it to variations 

in the energy of its source. This mechanism involves gravitational waves constituting a system that can be 

considered equivalent to the mass of the source.  

The second chapter aims to answer the following question: can we deduce the fundamental principle of 

dynamics from the properties attributed to the gravitational field? 

This question is based on the idea that if a body is at rest in a Galilean frame of reference, it is in equilibrium with 

its own gravitational field. An impulse applied to this body will set it in motion and increase its energy, which in 

turn will lead to a change in the gravitational field. And the variation in speed is linked to the variation in the 

gravitational field. Hence the link between the variation in velocity and the variation in energy, which leads to 

the fundamental principle of dynamics. 

The third chapter seeks to relate the concept of wave-particle duality in quantum mechanics to the concept of 

the gravitational field. 

We show that the characteristics of the gravitational wave that accompanies a moving particle allow it to act as 

a pilot wave (in reference to the concept introduced by Louis de Broglie's theory) and thus explain the wave 

behaviour of the particle. This pilot wave is the solution to an equation close to Schrödinger's equation. 

Finally, the motion of a particle appears to be entirely controlled by the gravitational field associated with it. 

This opens the door to another approach to quantum mechanics.  
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1.  Properties of the gravitational field 

 

1.1. Principles 

 

1.1.1.  A new approach to relativity 

 

First of all, it should be remembered that we are dealing with a new approach to special relativity 

based on the following hypothesis: the property of matter particles, invariant to a change of Galilean 

reference frame, is total energy (in the Einsteinian sense: E = mc2) and not rest mass.  

With this hypothesis, distances and durations are conserved in the event of a change of reference 

frame.  The delay of moving clocks is not due to a dilation of time, but to an increase in their energy 

compared with clocks that remain stationary. 

We postulate that the rest mass also varies when the particle undergoes a variation in potential 

energy in a gravitational field. 1 This explains the gravitational shift in clocks. 

It is on the basis of this postulate that new laws of gravitation have been defined that do not require 

the curvature of space-time.2 The principles underlying these laws are described in the appendix. 

 

1.1.2. Principle of gravitational interaction 

 

In Newtonian gravitational theory, gravitational attraction is modelled using a vector field  �⃗�(𝑟) 

proportional to the source mass of the field and varying inversely with the square of the distance. The 

overall field created by several sources is obtained by vector addition of the individual fields. 

Our new approach retains the principle of decay in 1/r2, but it is no longer the rest masses of the 

gravitational sources that are taken into account, but their total energies. 

The gravitational field, which is a physical reality, is considered to be a distribution of energy 

throughout entire space.  The gravitational interaction consists of an exchange of energy between 

gravitational sources and the global field created by these sources. 3 

 

 

 
1 We shall see in section 2.3 that it is possible to justify this hypothesis on the basis of the properties of the 
gravitational field. 
2 These laws make it possible to predict the results of experiments considered as tests of the theory of general 
relativity (cf. note entitled "Another approach to relativity"). In conclusion, this note explains the similarities and 
differences with general relativity. 
3 The vector field is no longer used as a principle; however, we will see that the interaction can be simulated by 
a vector field that differs from the Newtonian field in terms of the associated energy.  
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1.1.3.   Refreshing the gravitational field 

 

We assume that the field is periodically refreshed by two waves travelling at speed c :  

- one propagating energy from the source which it gradually transfers to the field ; 

- the other propagating the energy it takes from the field back to the source. 

We will refer to these waves as "gravitational waves". 4 

The field thus appears to be the result of these energy movements. It is constantly adjusting to the 

energy of the gravitational source. 

 

1.2. Gravitational field model 

 

We consider the gravitational field (assumed to be spherical) associated with a mass m at rest in a 

Galilean reference frame. The energy of the source mass is: W = m c2.  

 

1.2.1.  A reminder of the Newtonian model 

 

At a point at a distance r from the source, the gravitational field vector is written as : 

 �⃗�(𝑟) = - (Gm/r2) �⃗⃗�                                                               (1.1) 

�⃗⃗� being the unit vector in the radial direction 𝑟 . 

The force applied to a particle of mass m' subject to gravitational attraction is written : 

  �⃗� = m' �⃗�(𝑟) = - (Gmm'/r2) �⃗⃗�                                                                              (1.2) 

The gravitational vector field is derived from a potential V(r) : 

 �⃗�(𝑟) = - 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (V)   with   V(r) = - Gm/r                                                                (1.3) 

The potential is taken to be zero at infinity and the potential energy is therefore negative. 

The change in potential energy of the particle of mass m' is : 

 
 dEg = (Gmm'/ r2) dr                                                                                            (1.4) 

 

 

 

 
4 These waves differ from the gravitational waves of General Relativity. 
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Field energy 

We are going to show that it is possible to introduce into the Newtonian model an interaction energy 

of the field of two gravitational sources, which can be assimilated to the opposite of the potential 

energy. 

 

Consider two masses m and m' separated by a 

distance r0 . These masses create the gravitational 

fields  �⃗�(𝑟) and 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗) whose resultant is the vector 

sum   �⃗�(𝑟) + 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗). 

Let's suppose that, as with the electric field, at 

each point of the resulting field we can assign an 

energy density proportional to the square of the 

norm of the field vector :5 

                         δE(r,r') = k ∥ �⃗�(𝑟) + 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗) ∥2 = k ∥ �⃗�(𝑟) ∥2 + k ∥ 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗) ∥2 + 2k �⃗�(𝑟) 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗)                      (1.5) 

The total energy of the field is obtained by integration over the whole space. Let's look at how this 

energy varies with r0 . 

The first two terms do not depend on r0 . Only the third term [2k �⃗�(𝑟) 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗)] in equation (1.5), which 

can be thought of as an interaction energy density δEi , is likely to make a contribution. 

Let θ = angle (𝑟 , 𝑟′⃗⃗⃗) 

Given relation (1.1) : 

2k �⃗�(𝑟) 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗) = 2k G2 mm' (cosθ/r2 r'2) 

The two spherical shells centred at m and m', of 

radius and thickness respectively (r, dr) and (r', dr') 

have a cylindrical ring in common: 

with radius: OP = r sinα and cross-section:                  

dr dr'/sinθ. 

Let's find the amount of interaction energy dEc  contained in the shell (r, dr) by integration with respect 

to r'. 

The integral of (cosθ/r2 r'2) is written :                        ∫(2π r sinα cosθ /r2 r'2 sinθ) dr'    

Since sinα/r' = sinθ/r0 , it reduces to :                         ∫(2π cosθ /r0 rr') dr' 

 
5 cf. for example: L. Brillouin, L'énigme E = mc2 : énergie potentielle et renormalisation de la masse, Le journal 
de Physique, Tome 25, 1963. 

�⃗�(𝑟) + �⃗�′(𝑟′⃗⃗⃗) 

�⃗�(𝑟) 

�⃗�′(𝑟′⃗⃗⃗) 

m m' r0 

P 

m m' r0 

θ 

α 

O 

r r' 
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We know that (relationship in the mPm' triangle):    cosθ = (r2 + r'2 - r0
2) / 2rr' 

Finally, the interaction energy dEc  is the sum of two terms: 

 dEc (r) = (2k π G2 mm'/r0) (A + B) dr  

with :         A = (1/r2 ) ∫dr′  

 B = (1 - r02/r2) ∫(1/r’2) dr’   

The integration range6 is:                for r < r0 :      r0 - r ≤ r' ≤ r0 + r  

                                                             for r > r0 :       r - r0 ≤ r' ≤ r + r 0 

The result is as follows: 

- for r < r0  :  A + B = 0  In any shell with radius less than r0 , the interaction energy is zero; 

- for r > r0  :            A + B = 4 r0/r2      The interaction energy contained in the shell (r, dr) is : 

 dEc(r) = (2k π G2 mm’/r0)(4 r0/r2) dr  = (8k π G2 mm’/r2) dr                             

Integrating with respect to r gives the total interaction energy : 

 Ei = ∫ dEc(r) dr
∞

𝑟0
 = 8k π G2 mm'/r0 

The variation of the interaction energy with r0 is written : 

 dEi = - (8k π G2 mm'/r02) dr0                                                                             (1.6) 

This expression can be identified with the opposite of the variation in potential energy (1.4) by 

choosing : 

 k = 1/8πG 

The total interaction energy is then : 

 Ei = G mm'/r 0                                                                                                                                                                        (1.7) 

This is the energy required to move the sources infinitely apart. 

The terms [k ∥ �⃗�(𝑟)| ∥2] and k [∥ 𝐺′⃗⃗⃗⃗ (𝑟′⃗⃗⃗) ∥2] in equation (1.5) are interpreted as the energy of the fields 

created by the masses m and m', which are assumed to be isolated. 

 

 

 
6 We will see in the next paragraph that the field can only be defined at a minimum distance from the source  

(it becomes infinite when r tends towards 0).  

Strictly speaking, the integration domain must therefore exclude: for r, a ball of radius R g centred on m; for r', 

a ball of radius Rg ' centred on m'. Here we assume r0 ≫ Rg and Rg '. 
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1.2.2.   New field model  

 

Field energy created by an isolated source 

 

Wg is the total energy of the field and δWg (r) is its energy density. 

 The energy of the field decreases in 1/r2. 

 More precisely, the energy contained in a spherical shell of radius r and thickness dr is proportional 

to Wg/r2 : 

 dEc = 4π r2  δWg(r) dr = K (Wg/r2) dr                                                                                

For the energy of the field to be finite, it must be defined on the space outside a sphere centred on 

the source; let Rg be the radius of this sphere. 

 ∫ K
∞

Rg
  (Wg/r2) dr = Wg

         which means: K = Rg 

Therefore : dEc = (Rg/r2) Wg dr                                                                                                (1.8) 

The energy density is written as : 

      δWg (r) = (Rg /4π r4 ) W g                                                                                                                                    (1.9) 

 

Potential energy 

 

The laws of gravitation that we have proposed have been established on the assumption that we can 

neglect the influence of the particle subjected to the gravitational field on the source of the field. This 

source is assumed to be fixed in a Galilean frame of reference and to have invariable mass: its field is 

that of an isolated source. 

Referring to the experimental results, we postulated that the variation in potential energy of a particle 

of energy W' at distance r from the source of the gravitational field is : 

  

 dEg =  2 (Gm/ c2r2) W’(r) dr   
                                                                          

1
.
10) 

The introduction of the multiplication coefficient 2 with respect to the Newtonian expression is due to 

the assumption of non-invariance of the rest mass: in our model, half of the variation in potential 

energy is in fact allocated to the variation in the rest energy of the interacting particle and the other 

half to the variation in the momentum (see appendix). 

 The potential is twice the Newtonian potential:    

 V(r) = - 2 Gm/r                                                                                                      (1.11) 

On the other hand, unlike Newtonian theory, the energy W' (which is the total energy) varies with the 

distance of the particle from the source. Hence the notation W'(r).  
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From the potential half-energy we can deduce the force applied to the particle to account for the 

gravitational attraction, which is written : 

 �⃗� = - (GmW’(r)/c2r2) �⃗⃗�        

We can therefore still consider that  �⃗� can be deduced from the gravitational field vector :  

 �⃗�(𝑟) = - (GW/c2r2) �⃗⃗�                                                                                       (1.12) 

This vector is the same as that of the Newtonian field, with the difference that it is the total energy W 

and not the mass that is taken into account. 

 

Interaction of two sources 

 

Let's repeat the reasoning in paragraph 1.2.1 from equation (1.5) with the field defined by equation 

(1.12).7 For the energy to be doubled, the value of the coefficient k must be doubled.  

With k = 1/4πG, the interaction energy becomes (doubling the value given by (1.6)) : 

  dEi = - 2 (GW/ c4r2) W’(r) dr                                                                                (1.13)   
                                                                          

 

It is the opposite of the potential energy given by equation (1.10). 

This relationship is only valid if the effect of the variation in W'(r) can be neglected in the calculation 

of dEi,  i.e. at great distances from the source.  

We assume that the terms [k ∥ �⃗�(𝑟) ∥2] and [k ∥ 𝐺′⃗⃗⃗⃗ (𝑟) ∥2] can be assimilated to the energy density of 

the fields created by masses m and m' considered as isolated.  

Therefore:  δWg(r) =  G W2/4π c4 r4     

By comparison with the equation (1.9) we obtain the value of Rg : 

 Rg = G W2/ c4Wg                 

If the energy of the field is half the energy of the source (Wg = W/2), the value of Rg is : 

 Rg = 2 G W/ c4 = 2 Gm/c2                                                                                  (1.14) 

We will see in section 1.3.1 that the field refreshment model we have devised supports the above 

hypothesis. 

Rg  is none other than the Schwarzschild radius. The gravitational field model we have just 

established therefore shows this radius as the limit below which no gravitational action is exerted.8 

 
7 In section 1.3.2, we will see that it is possible to explain the interaction between sources on the basis of the 
field refreshment mechanism, without introducing a vector field. 
8 This is not surprising since, in the comparison made between our approach to gravitation and the theory of 

general relativity, we refer to the Schwarzschild metric, which is precisely defined outside the sphere of radius 

Rg. 

 



9 
 

1.3. Gravitational field refreshment mechanism 

 

1.3.1. Transmitting and receiving energy  

 

In application of the principle adopted in paragraph 1.1.3 we consider, in a reference frame where an 

isolated gravitational source is at rest, two spherical waves of velocity equal to c, one propagating 

energy towards the field (outgoing wave), the other propagating energy towards the source (incoming 

wave). 

We also assume that the transfer and withdrawal of energy from the field take place alternately for 

durations equal to a period T.  

 

As a result, in each spherical shell of thickness cT, the field energy fluctuates between the energy 

supplied by the outgoing wave and a zero value. We will assume that the average total energy of the 

field is equal to half the energy emitted or received at the Schwarzschild limit.  

In paragraph 1.2.2 we made the assumption that the energy of the field is equal to half the energy of 

the source. The energy of the outgoing or incoming gravitational waves is therefore equal to the 

energy of the source. 

Let us now assume that:                          cT = Rg  (so T = Rg /c = 2 Gm/c3). 9                                       (1.15) 

The diagram below illustrates the oscillation of the gravitational field created by the alternating 

transfer and extraction of energy in spherical shells of thickness Rg : 

 

                                                                                                                                            Transfer of energy 

                                                                                                                                            Energy extraction 

 

 

 

 

Remember that the energy of the field decreases in 1/r2 and that the energy transported by 

gravitational waves varies in 1/r. In a reference frame where the source is at rest, the conjugation of 

these waves does not displace any energy, but simply causes an oscillation of the field. 

 The gravitational wave system can be considered as equivalent to the mass of the source.10 

 
9 We shall see in Chapter 2 that this choice makes it possible to deduce the fundamental principle of dynamics 

from this property of the gravitational field. 
10  On a different basis, G. La Frenière expressed the idea that matter is made up of waves: 
http://web.archive.org/web/20110901223405/http://glafreniere.com/matter.htm 

Between t and t + T Between t + T and t + 2T 

figure 1 
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1.3.2. Interacting sources: energy exchange between sources and field 

 

We are now able to propose a mechanism for the exchange of energy between sources and the 

gravitational field that explains the potential energy. 

We consider two sources of mass m and m' separated by a distance r0. 

 

 

 

 

 

In section 1.2.1 we saw that the interaction energy is zero inside the spheres Sm and Sm’ of radius r0. 

This means that : 

-  the source m' does not interfere with the field of m inside the sphere Sm ; 

-  the source m does not interfere with the field of m' inside the sphere Sm’ ; 

Let's assume that the sources of masses m and m' approach each other by a distance |dr0|. 

The variation in interaction energy is due to the withdrawal of energy: 

- of the source m' on the field, created by m, contained in the shell Cm  of centre m, radius r0 

and thickness |dr0| ; the energy of this shell is: (Rg/r02) W |dr0| ; 11 

- of the source m on the field, created by m', contained in the shell Cm’ of centre m', radius r0 

and thickness |dr0|; the energy of this shell is: (Rg’/r02) W’ |dr0|. 

For the source m, energy is drawn off over a time T proportional to the energy W; similarly, for the 

mass m', energy is drawn off over a time T' proportional to W'. We'll assume that energy is withdrawn 

in proportion to the withdrawal times :  

                                               W/(W + W') and W'/(W +W'). 

The energies extracted are therefore worth : 

- for source m': (W’/(W+W’))(Rg/r02) W |dr0| = 2 G (W2W’/(W+W’))/c4r02 |dr0|              (1.16) 

- for source m: (W/(W+W’))(Rg’/r02) W ‘|dr0| = 2 G (W’2W/(W+W’))/c4r02 |dr0|               

The continuous refreshing of the fields means that their energy is constantly being restored. This 

explains why the energy drawn by one source from the field of the other can be considered as 

interaction energy added to the energies of the fields of the isolated sources. 

 
11 To determine the energy drawn, the maximum value (W) of the field energy must be taken into account. 

Cm 

dr0 

m m' r0 
Sm’ Sm 

figure 2 



11 
 

The variation in interaction energy is the sum of the two terms above, i.e. :12 

 dEi = - 2 (G WW’/c4r02) dr0  = - 2 (G mm’/r02) dr0      

In our case (m >> m'), the interaction energy is entirely captured by m'. This one is the opposite of the 

variation in potential energy of this particle (see equation (1.10)). 

The method can be extended to the interaction of any number of sources. 

 

1.3.3. Photons in a gravitational field 

We admitted that the phenomenon of energy exchange between a gravitational field and a particle of 

non-zero mass could be transposed to photons.13 How can this be explained? 

We assume that electromagnetic waves have the same capacity to exchange energy with the 

gravitational field as gravitational waves.  

A photon of energy Eφ , which can be considered as a fragment of an electromagnetic wave, therefore 

also has this capacity. Assuming that this photon belongs to a spherical electromagnetic wave of total 

energy N Eφ , equation (1.15) in the previous paragraph becomes : 

  N|d Eφ | = ( NEφ /(W+N Eφ))(Rg/r02) W |dr0|  

Therefore: |d Eφ | = (Eφ /(W+N Eφ))(Rg/r02) W |dr0| ≈ Eφ (Rg/r02) |dr0|           (if W≫N Eφ )                (1.16) 

 which is the equation giving the variation in photon energy. 

 

 

 

 

 

 

 

 

 

 

 

 
12 Of course, we find the value given by equation (1.13), taken from the energy density of the mean field. 
13 cf. note entitled "Another approach to relativity" paragraph 5.1.3. 
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2.  Gravitational field and the Fundamental Principle of Dynamics 

 

2.1. Fundamental equation of dynamics 

 

Consider a body of mass m14 moving at speed v
 →
. This body is subjected to the action of a force F

 →
.  

   The fundamental equation of dynamics is written : 

           d(m v
 →
)/ dt = F

 →
                  (2.1)

                                        The change in energy is equal to the work of the force :  

                                dW = F
 →
( v
   → 

dt )  

      Equation (2.1) can therefore be written as : 

                                v
   → 

 d(m v
 →
) =  dW                             (2.2) 

Let's say: dv = d(∥ v
 →
∥) .  Given the principle of equivalence between mass and energy (W = m c2 )  

and the fact that   v
   → 

d v
   → 

 = v dv (because dv ≈ ∥ d v
  →

 ∥ cos θ), we have :                            

   (v dv/c2) W + (v2 /c2 ) dW = dW 

or :  dv =  (1- v2 /c2) (c2 /v) dW/W                     (2.3) 

We will show that it is possible to obtain the latter equation from the properties of the gravitational 

field described in Chapter 1. 

 

2.2. Establishing the fundamental equation of dynamics from the field 

  

Consider a body of mass m and total energy W with velocity v in reference frame Σ. This body 

undergoes an impulse transferring to it an increment of energy ΔW during the period T that punctuates 

the field adjustment (cf. paragraph 1.3.1). We are looking for its velocity increment Δv. 

In the reference frame Σ' where the body is at rest, the Schwarzschild boundary consists of a sphere of 

radius Rg .  

 We have seen that Rg is proportional to W (equation (1.13)). The energy increment ΔW therefore 

increases the Schwarzschild radius by an amount ΔRg such that :  

  ΔRg /Rg = ΔW/W                                                                           (2.4)
 

 

 
14 In this chapter, we use the term "body" to refer to gravitational field sources because the reasoning applies 
whatever the size of these bodies. It should also be remembered that the term "mass" is not reserved for rest 
mass. 

       
v 
→ 

       
dv 
→  

θ 

F
 →
      

m 
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We can assume that the increase in radius is accompanied by a displacement of the sphere, as shown 

in Figure 3: the sphere of radius Rg + ΔRg tangents the sphere of radius Rg . The centre of the sphere 

then moves by the amount ΔRg.  This is equivalent to considering that the body is limited in its 

displacement by the impossibility of interacting with its own field. All we need to do is determine the 

duration associated with the displacement ΔRg to deduce the additional velocity of the body.  

The period T corresponds in Ʃ to a displacement of the centre of the field from O to O1 such that:  

OO1 = v T.       

 

 

 

 

 

 

Since we assume that the field is established at speed c, the adjustment over a distance equal to OO1 

takes place in a time : 

                 ΔT = v T/c. 

It is during this time that the radius is adjusted to its new value when an impulse is given. 

We have chosen: T = Rg /c (see equation (1.14)). 

Therefore :        ΔT = v Rg /c 2 

The speed increment in reference frame Σ' is : 

 Δu = dRg  /ΔT = (c2 /v) ΔRg /Rg                                                                            (2.5) 

Rg 
Rg + ΔRg 

        v+Δv  

Reference frame Σ' where the body is at rest 

figure 3 

        v+Δv 

Reference frame Σ where the body has velocity 

v+Δv 

O O1 

figure 4 
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The law of composition of velocities leads to the following increment in reference frame Σ : 

 Δv = (1 - v2 /c2 ) Δu = (1 - v2 /c2) (c2 /v) ΔRg /Rg 

or :  Δv = (1- v2 /c2) (c2 /v) ΔW/W        (2.6) 

which is the desired result.  

 

What happens if the body of mass m cannot be considered as a single gravitational source?  

The above reasoning applies to each mass fraction me source of a field defined from a single central 

point.  The result (2.1) is broadly the same if, for any elementary mass, the velocity is identical (= v) 

and the ratio ΔWe /We identical (= ΔW/W ).     In other words, in the case of a rigid body. 

Note: the hypothesis of the existence of black hole implies that masses with distinct gravitational fields 

can merge into a single source. 

 

 

2.3. Sharing potential energy in our approach to gravitation 

 

From the reasoning in paragraph 2.2 it is possible to justify the third principle in our new approach to 

gravitation: 

"The rest energy of a particle of non-zero mass varies with its distance from the source. In the absence 

of external forces, the variation in energy associated with the rest energy and the variation in energy 

associated with the momentum are each equal and opposite to half the variation in potential energy". 

The gravitational energy received by the source is related to a duration of 2T. Equation (2.2) therefore 

becomes :  
 ΔT = 2 v Rg /c 2

 

And equation (2.3) becomes : 

 v dv/c2 /(1- v2 /c2 ) = (dW/2)/W 

We can assume that the change in speed is related to half of the change in energy, and that the other 

half must therefore be allocated to the change in energy related to the rest mass.  
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3. Gravitational field and quantum mechanics 

 

3.1. Wave behaviour 

 

3.1.1. Louis de Broglie's hypothesis 

 

An electromagnetic wave of frequency ν can be considered to be made up of photons (quanta of 

energy h ν), emitted at frequency ν. 

Conversely, even an isolated photon of energy Eφ can be associated with a wave of frequency Eφ /h, 

which allows us to account for the wave-like behaviour of the photon. 

Louis de Broglie extended this wave behaviour to particles of non-zero mass: to a particle at rest of 

mass m0 , he associated a periodic phenomenon of frequency ν0 such that : 

 m0 c2 = h ν 0                        (3.1) 

Considering that this equation must be invariant by the Lorentz transformation, he defines this periodic 

phenomenon as a wave whose characteristics are given in the table below (in comparison with those 

of photons): 

 

 photon Material particle 
(mass m, speed v) 

energy E = h ν E = h ν = m c2 

momentum p = E/c p = m v = E v/ c2 

wavelength λ = h/p =c/ν λ = h/p = (c2 /v)/ν 

 

A particle moving at speed v can thus be associated with a wave having frequency ν = m c2 /h 15 , 

speed V = c2 /v and wavelength : 

  λ = h/mv
            

                                                 (3.2) 

With a speed greater than c, this wave cannot carry any energy. De Broglie calls it a "phase wave" 

associated with the propagation of the particle because, for a fixed observer, there is agreement 

between the phase of the wave and the phase of a clock that has the frequency ν0 in the reference 

frame linked to the particle.16 

The phase wave explains the wave-like behaviour of material particles. The relationship (3.2) has been 

verified by several diffraction experiments on electrons, but also on more massive particles. 

 
15 Remember that m is the mass corresponding to the total energy of the particle. For us, m is therefore also 
the rest mass in the frame of reference where the particle is stationary. De Broglie writes: ν = γ m0 c2 /h.   
16 Recherches sur la théorie des quanta, doctoral thesis defended in Paris on 25 November 1924. 
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3.1.2. Double solution theory and pilot wave 

 

Louis de Broglie presents his conception of wave mechanics as follows: 

 

"When, in 1923-1924, I developed the results that appear in my doctoral thesis, I started from the idea 

that it was necessary to extend to all particles the coexistence of waves and particles discovered in 1905 

by Einstein for light in his theory of light quanta (photons). To achieve this, I felt it was essential to 

adopt the physical image of a wave, undoubtedly of very low intensity, which would transport particles 

conceived as large local concentrations of energy incorporated into the wave". 17 

 

On this basis, in May 1927 he proposed the "double solution theory". 18 This theory led to the idea that 

the wave associated with the particle guided its movement: it was a pilot wave. 

 

Given the purely probabilistic development of the interpretation of quantum mechanics, the idea of a 

pilot wave having a physical reality was put aside. It was not revived until after 1950 and developed by 

David Bohm.19 

 

We will now define the characteristics of gravitational waves and show that these characteristics 

enable them to act as pilot waves. 

 

3.2. Characteristics of gravitational waves 

 

3.2.1. Quantum of gravitational energy 

 

In Chapter 1 we associated a period T = Rg /c with gravitational waves, which controls the 

refreshment and oscillation of the gravitational field. We also saw that these waves carry (in the 

Schwarzschild limit) an energy equal to the total energy W of the source.  

We postulate that the energy emitted or received each time the field is refreshed constitutes an 

indivisible quantum. However, as the energy transported varies in 1/r, the energy of the quantum 

varies with the distance from the source: 

 Wq (r) = (Rg /r) W 

By extending the Planck-Einstein relation for photons, we postulate that any quantum of 

gravitational energy W can be associated with a wave fragment whose frequency νS verifies the 

relation:20 
W = h νS                                                                                                                                                                                         (3.3) 

 
17 Louis de Broglie, sa conception du monde physique, Gauthier-Villars Ed, 1973 
18 Louis de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, Le 
journal de Physique et le radium, May 1927. 
19 D. Bohm & B.J. Hiley, The undivided universe, Routledge Ed, 1993. 
20 Note that the frequency is associated with the quantum of energy of the gravitational wave and not directly 
with the energy of the particle.  
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The gravitational wave can be seen as a succession of energy quanta hνS  (originally) emitted (or 

received) at the frequency 1/2T. It is the frequency νS , and not the emission frequency, that controls 

the wave behaviour of the quanta. 

The analogy between photons and gravitational energy quanta cannot be extended to a complete 

analogy between electromagnetic waves and gravitational waves because, for the latter, the frequency 

linked to the energy of the quanta (νS ) and the emission frequency (1/2T) are distinct:   

          νS  is proportional to m, 1/2T is proportional to 1/m. 21 

Note: for an electromagnetic wave moving photons of constant energy, the power varies as the square 

of the frequency22 , whereas for a gravitational wave, it is the energy of the quantum that varies as the 

square of the frequency (at a given distance r). 

Wave equations 

Let's assume that, in reference frame Ʃ' where the source is at rest, we can associate a sinusoidal 

wave function with pulsation :  

    ωS  = 2π ν S 

The propagation equations are as follows: 

- for the outgoing wave :    Us( r′→,t’) = A(r’) sin (ωS (t’– r’/c))                                                        (3.4) 

- for the incoming wave :   Ue( r′→,t’) = - A(r') sin (ωS  (t' + r'/c - 4Rg /c))    

We have :  Us(Rg, Rg/c) = 0  et  Ue(3Rg, Rg/c) = 0, 

which ensures the correct phase shift between incoming and outgoing waves. 

What do Us and Ue represent? 

In view of the remark made above and by analogy with the Poynting vector, which gives the power per 

unit area of an electromagnetic wave, let's assume the following relationship between the energy of 

the gravitational quantum per unit area and Us (or Ue ):  

 Wq (r') / 4πr'2 = k avg (Us2 )                 (3.5) 

avg( ) representing the time average over a period equal to the wave period. 

Therefore :                          avg (Us2 ) = A(r’)2/2 

To express the interaction energy of the gravitational field (see section 1.2.2 Interaction of two 

sources), we used k = 1/ 4π G.  

To take into account the energy dissipation of the wave, this value must be multiplied by 1/r' : 

 k = 1/ 4π G r' 

 
21 We will come back to this difference in paragraph 3.3.4. 
22 cf. note entitled "Another approach to relativity", paragraph 4.2.2. 
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With this value of k, the following expression for A(r')2 can be derived from equation (3.5) : 

 A(r')2 = 4 G2 m2 /r'2 

A(r') can therefore be identified with the potential (see equation (3.11)): 

 A(r') = - 2 Gm/r'                      (3.6) 

 

3.2.2. Source in motion  

 

Let's now consider that the particle of mass m, the source of the gravitational field, is moving 

rectilinearly and uniformly at speed v in reference frame Ʃ (x,y,z,t). We choose the x axis parallel to 

the velocity. 

The conjugation of the incoming and outgoing waves leads to the equation : 

                                             U( r′→,t') = - 2 A(r') sin(ωS (r'/c + 2Rg /c)) cos (ωS   (t' -2Rg /c))               (3.7) 

which is the standing wave equation. 

 

The equations for the change of reference frame between Σ' 

and Σ can be written as23 :    

  

   x' = x - v t 

      t' = t - v x/c2 

                                                                          Where θ'  is the angle of the ray r′→ with respect to v→: 

                                            r' = x' /cos θ' = (x - v t)/cos θ' 

                 And :    r′→ = r→ - v→t 

In the reference frame Σ, the equation (3.7) for the resultant wave therefore becomes : 

U(x, θ’, t) = - 2 A(r’) sin (ωS ((x - v t) /c cos θ’ + 2Rg/c)) cos (ωS (t - v x/c2 - 2Rg/c))                      (3.8)        

         U(x, θ’, t) = 2 A(r’) sin ((v /c cos θ’) ωS (t - x/v - 2Rg cos θ’/v))cos(ωS ( t - x/( c2/v) - 2Rg/c))          

or as a function of r→ :  

U( r→,t)   = - 2 A(∥ r→ - v→t∥) sin (ωS ( ∥ r→ - v→t∥/ c + 2Rg/c)) cos (ωS ( t – v .
→ r→/ c2 - 2Rg/c))        (3.8’)                

This equation combines a group wave and a phase wave, which can be considered as plane waves 

propagating in the direction of the particle's velocity: 

 
23 cf. note "Another approach to relativity", § 2.4. The basic reference frame is Σ' and Σ moves at speed - v 
relative to it. 

r' 

r 
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OA = x 

O'A = x' 
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- the group wave [2 A(r') sin ((v /c cos θ') ωS (t - x/v - 2Rg  cos θ'/v))] has a frequency 

[(v /c|cos θ'|)νS ] which varies with the direction of radiation considered (in Σ'). Its 

speed is v, like the particle whose motion it accompanies; it is this wave that displaces 

the energy;   

- the phase wave [cos (ωS ( t - x/( c2/v) - 2Rg/c))] has the same frequency as the 

gravitational waves in Σ': νS , and its speed is equal to c2/v.    

 

We can see straight away that the phase wave fulfils the conditions of De Broglie's hypothesis:  

- its frequency is:       νS = mc2 /h   

- its speed is:              c2/v. 

Note: The wavelength of gravitational waves is : 

  λS = c/ νS = h/mc                                         (3.9) 

This is the Compton wavelength, which is also the wavelength of the group wave for θ' = 0.  

 

3.2.3. Displaced energy 

 

In the reference frame Σ where the source is in motion, the resulting wave displaces in a time Δt an 

energy equal24 to that contained in an infinite plane slice perpendicular to v and of thickness v Δt (as 

shown below on the assumption that: v Δt  <  Rg). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us first calculate the energy dWg(x) contained in a flat slice of thickness dx of the gravitational field 

perpendicular to the direction of motion, at a distance x from the centre of the source less than the 

Schwarzschild radius Rg = 2 Gm/c2. 

 
24 Remember that the average energy of the field is equal to half that of the source and is independent of the 
Galilean reference frame considered. 

v Δt 

Rg 

direction of v 

figure 6 
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  The energy density of the field has the value (see (1.9)):      

δWg(r) =  (Rg/4π r4 ) Wg  =   G m2/(4π r4)                 

            dW(x) =  dx ∫ (G
𝛱/2

𝛼0
 m2/ (4π r4)) (2π x tg α) x d(tg α)              

Since r = x /cosα : 

dW(x) = – dx (Gm2/2x2) ∫ sin𝛼
𝛱/2

𝛼0
 cos α dα     

dW(x) = – dx (Gm2/4 x2) (sin2(π/2)  –  sin2 α0) 

Since Rg = x /cosα0 : 

dW(x) = dx (Gm2/4 Rg2) = dx (c4/16G)                 (3.10) 

Note: as long as the slice intercepts the Schwarzschild limit, the energy contained in the slice is 

proportional to its thickness and independent of the source mass of the gravitational field. However, 

for a thickness Δx = Rg , the energy is proportional to the mass, as expected. 

For a displacement time equal to 2T, the displacement is : Δx = 2v T = 2v Rg /c  

(3.10)  →                               ΔWg =  (2v/c) (Gm2/4Rg) =  m c v/4                                                               (3.11) 

It is easy to check that this result is to be multiplied by Rg2/x2 if we place ourselves at a distance x > Rg 

So, for a period equal to 2T : 

- gravitational waves emit and extract energy equal to m c2 ; 

- at distance x in reference frame Ʃ, everything happens as if the resulting wave displaced an 

energy equal to (Rg /x)2   m c v/4.    

 

3.3. Resulting gravitational wave as a pilot wave 

 

3.3.1. Particle trajectory 

 

We have seen that the resulting wave satisfies the de Broglie hypothesis. Can it act as a pilot wave to 

define the particle's trajectory?  

Consider the phase factor: 

S =  ωS ( t - v→
 
. r→ /c2) = (m/h) (c2 t - v→ . r→ ) 

We can immediately see that the velocity of the particle is expressed by the relation :  

v→ = - (h/m)   grad→    S                                                                                         (3.12) 

 

r 

Rg 

 

x 

 

α 
α0 

dx 



21 
 

  The phase wave in equation (3.8') is written as : 

 P = cos (S - 2 ωS Rg /c) 

Consider the sphere of radius dr centred on the position of the particle at a given 

instant.    On this sphere, the value of the phase wave is P + dP, with :      

 dP = - sin (S - 2 ωS Rg /c) dS  

  or:     dP = - sin (S - 2 ωS Rg /c) ( grad→   S . dr 
→ 

 ) 

 (3.12)  →                           dP = (m/h) sin (S - 2 ωS Rg /c) ( v→. dr 
→ 

 ) 

On the trajectory of the particle, we have : dr 
→  = v→ dt. This implies that dP reaches its extremum. 

We can therefore consider that the particle moves, each time the field is adjusted, in the direction 

of the extremum of the phase wave (on the Schwarzschild limit).  

In reference frame Σ, at time t0 , the particle has abscissa x0 . The points of the associated Schwarzschild 

sphere have abscissa  :  

      x = x0 + Rg cos θ' 

Let's take equation (3.8) again. On the Schwarzschild sphere at time t1 = t0 + Rg /c, with r' = Rg , it 

becomes : 

                U (x0 , θ', t1 ) = - 2 A(RS ) sin(3 ωS Rg /c) cos(ωS  (t0 - Rg /c - v(x0 + Rg cos θ') /c2 ))       (3.13)   

We can see immediately that the derivative   ∂U/ ∂θ′  has sin θ' as a factor and cancels out for θ' = 0.    

U  therefore has an extremum for θ' = 0.  In the absence of any disturbance to the wave propagation, 

this corresponds to a rectilinear displacement.   

 In the case of interaction, the derivative may cancel for 

an angle θ'1 ≠ 0 and another angular coordinate φ1 must 

be introduced. The coordinates of the particle at time t1 

will be : 

             (x1 = x0 + v Rg cos θ'1 /c, θ'1 , φ1 )  

 

The trajectory is therefore built up in successive sections. In the interpretation proposed above, these 

are straight line segments, associated with field adjustments as in the analysis developed in chapter 2. 

 

Note: it is the amplitude distribution of the pilot wave at the Schwarzschild limit that controls the 

motion of the particle. Any perturbation of this distribution can result in a deviation of the trajectory. 

Such a deviation can be the result of interference phenomena, as explained in the next paragraph. 

 

 

Rg 

θ'1 

dr→ 
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3.3.2. Interference 

 

The association of the pilot wave with the particle makes it possible to explain interference phenomena 

as soon as it is accepted that this wave can be diffracted. 

In the experiments that have been carried out, interference is obtained by using parameters (slit width 

and spacing) based on the wavelength of the phase wave. Note that the group wave generally has a 

much shorter wavelength (in the ratio v/c).  

If a screen with two slits is placed in the path of the particles, each particle passes through only one of 

the slits, but the diffraction of the phase wave causes interference. The result is a deviation in the 

trajectory of the particle each time the field is refreshed in the direction of the local extremum of the 

phase wave, as explained in the previous paragraph. 

As in Bohmian mechanics, the trajectories depend on the particle's initial conditions. The succession 

of particles gradually forms the interference pattern.  

 

3.3.3. Differential propagation equation 

 

Note on the Schrödinger equation :  

In quantum physics, the Schrödinger equation gives the evolution of the wave function ψ( r→,t) 

associated with a particle. For a free, non-relativistic particle, it is written : 

 i h ∂ψ/ ∂t = - ( h2 /2 m0 ) Δψ                      (3.14) 

This equation is often presented as admitting a solution of the "De Broglie wave" type:  

                                             ψ( r→,t) = ψ0 exp((- i/ h)(E t - p
→
r
→

 )) 

 This is a misnomer because, although the wave in question does have a wavelength equal to h/m0  v, 

its frequency and speed are completely different from De Broglie's hypothesis. This is because the 

energy taken into account is the kinetic energy and not the total energy of the particle (E = mc2). 

Can the propagation of a wave that fully satisfies the de Broglie hypothesis be described by the 

Schrödinger equation? On the basis of work carried out by Asim Barut, Laurent Bindel has proposed 

an affirmative answer to this question: a possible solution to the Schrödinger equation is a de Broglie 

plane wave modulated in amplitude by a travelling wave solution to a Helmholtz equation.25 

Inspired by this approach, we will show that the pilot wave is the solution of a differential equation 

close to the Schrödinger equation. 

 

 
25 L. Bindel, Non-Relativistic Quantum Mechanics of an Individual Particle, Annales de la Fondation Louis de 
Broglie, Volume 37, 2012. 
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Solution using a modified Schrödinger equation :  

Let us show that the wave function (3.7) (3.8) is a solution of an equation obtained : 

-  by writing Schrödinger's equation with the mass m, representative of the total energy, and not 

the rest mass m0  ; 

-  by adding a ψ term to the second member: 

 i h ∂ψ/ ∂t = - ( h2 / 2 m)Δψ + α ψ                    (3.15) 

The propagation equation we are going to establish will be valid whatever the speed of the particle, 

relativistic or non-relativistic. 

Put into complex form, the wave function (3.7) is the product of two functions: ψ = G P,  

with : G = - 2 A(r') sin(ωS  (r'/c + 2Rg /c))             (group wave) 

 P = exp (– i(ωS ( t – v→ r→/ c2 - 2Rg/c))        (phase wave) 

                                   = exp ((- i/ h)(  E t - p→ r→ - 2 E Rg/c))       

We have :  ∂ψ/ ∂t = (∂𝑮/ ∂t) P - i ωS  G P 

Since the partial derivatives of P with respect to the y and z coordinates are zero, the Laplacian of ψ 

reduces to : 

 Δψ = ΔG  P + 2 (∂𝑮/ ∂x) (∂𝑷/ ∂x) + G (∂2𝑷/ ∂x2) 

with :  ∂𝑷/ ∂x = i (ωS v/c2) P   et  ∂2𝑷/ ∂x2  = – (ωS v/c2)2 P 

or : Δψ = (ΔG  + 2i (ωS v/c2) (∂𝑮/ ∂x) – (ωS v/c2)2 G) P 

By separating the real and imaginary parts, equation (3.12) can be reduced to the system of equations: 

 ΔG + (2 (m/h )(ωS – α/ h) – (ωS v/c2)2) G= 0         

                                             (∂𝑮/ ∂t) + ( h/m) (ωS v/c2) (∂𝑮/ ∂x) = 0     

Taking into account the relationship ωS  =  mc2/ h, these equations become : 

                                              ΔG + (2 ((ωS /c)2 – (α/ h) ωS /c2) – (ωS /c)2( v2/c2)) G= 0                      (3.16) 

                                           (∂𝑮/ ∂t) + v (∂𝑮/ ∂x) = 0       (3.17) 

Equation (3.17) is satisfied by G because this function has the variable : 

  r’ = ((x – v t)2 +y2 +z2)1/2             So G is a function of (x - v t). 

Let us find α such that the coefficient of G in equation (3.16) is equal to (ωS /c)2  : 

 (ωS /c)2(1 –  v2/c2)) = 2 (α/ h) ωS /c2 

 α =  h ωS (1 –  v2/c2)/2 = m(c2 – v2)/2 
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Equation (3.16) is finally written : 

                                                 ΔG + (ωS /c)2 G= 0                                              (3.18) 

This is a Helmholtz equation.  

With A(r') = - 2 G m / r' (see paragraph 3.2.1.), the G function is written as : 

 G = - 4 (G m / r') sin ((ωS /c)(r' + 2Rg )) 

It has a pulsation equal to ωS /c and verifies equation (3.15): it can be identified with a spherically 

symmetric solution of this equation. 

The function describing the pilot wave in reference frame Σ is therefore a solution of equation : 

 i h ∂ψ/ ∂t = - ( h2 / 2 m)Δψ + m (c2 - v 2) ψ /2                                         (3.19) 

 

3.3.4. The limit of wave behaviour 

 

We have seen that the frequency linked to the energy of the gravitational energy quanta (νS ) and the 

emission frequency (1/2T) are distinct.  

The ratio between these frequencies is : 

 νS /(1/2T) =  (mc2/ h)/(c3/4 Gm) =  4 m2 (G/hc)  

By introducing the Planck mass [mp = (hc /G)1/2], this ratio is written : 

  νS /(1/2T) =  (2/π) (m/mp)2                 (3.20) 

 

If we refer to the ratio defined by equation (3.20), we can see that the experiments used to verify De 

Broglie's hypothesis have all involved particles with masses very small compared with the Planck mass, 

for which the frequency of the gravitational waves is much lower than the refresh rate. Perhaps the 

ratio of 1 constitutes a limit for the manifestation of wave-like behaviour in particles? 

 

 

At the stage we have reached, we can conclude that it is possible to explain the behaviour of a 

moving particle by its gravitational properties: 

- modification of its speed in the event of a modification of its energy, in accordance with the 

fundamental law of dynamics ; 

- wave behaviour associated with the gravitational waves that accompany it.  
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Appendix  

Principles used to establish the laws of gravitation for a non-zero mass 

particle in a weak field26 

 

 

 First principle: gravitational field and potential energy 

The gravitation created by a gravitational source of mass m can be characterised by a gravitational 

field that imparts potential energy to the particles present in it.  

The variation in the potential energy of a particle, of zero or non-zero mass, is proportional to its total 

energy E, calculated in the reference frame linked to the source; it is given by the relation : 

 dEg = 2 (Gm/ c2r2) E dr       

             

Second principle: conservation of energy 

The variation in total energy of a particle is equal to the opposite of the variation in potential energy 

plus the work of external forces, if any: 

 dE = dEx - dEg 

 

Third principle: the influence of gravitation on a particle's energy and momentum 

The rest energy of a non-zero mass particle varies with its distance from the source.  

In the absence of external forces, the variation in energy associated with rest energy and the variation 

in energy associated with momentum are each equal to and opposite half the variation in potential 

energy.  

 

Fourth principle: equivalence between gravitation and acceleration  

The fundamental law of dynamics can be applied to determine the relationship between the change 

in momentum of the particle and the change in energy associated with that momentum under the 

effect of the gravitational field.  

(Given the third principle, equivalence cannot be considered complete) 

 
26 cf. note "Another approach to relativity", § 5.1.2. 


