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1.  Introduction and summary  

 

In the theory of special relativity, the principle of relativity (invariance of the laws of physics when 

changing a Galilean reference frame) and the universality of the speed of light (independence from the 

reference frame and from  the velocity of the source) imply that the clocks of two reference frames in 

relative motion appear to be out of sync. Apart from this desynchronisation, the equations for changing 

coordinates (Lorentz formulae) show a dilation of durations and a contraction of distances from one 

reference frame to the other.    

Several physical phenomena, such as the delay of clocks in motion or the increase in the lifetime of 

atmospheric muons compared with muons at rest, are in agreement with the predictions of the theory 

and give reality to time dilation, according to the commonly accepted interpretation. It is implied that 

the systems under consideration are not affected by their rectilinear and uniform motion: in particular, 

clocks continue to deliver the same unit of time. 

From our point of view, this phenomenon of time dilation constitutes a real point of contradiction, 

since observers of one reference frame are justified in maintaining that time really does pass more 

slowly in any reference frame in rectilinear and uniform motion compared with their own reference 

frame. 

For its part, the theory of general relativity uses a curvature of space-time, produced by the distribution 

of energy, to account for gravitation. In this way, it fully explains phenomena such as the advance of 

Mercury's perihelion or the curvature of light rays close to the sun, which can be observed during 

eclipses. 

The starting point for this paper is the search for an answer to the following question: without calling 

into question the principle of relativity, is it possible to construct an alternative, non-contradictory 

theory that does not involve distortions of space and time? 
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After a reminder of the synchronisation of clocks in Galilean reference frames and the establishment 

of the equations for changing coordinates between reference frames within the framework of special 

relativity, we examine the concept of event and propose an alternative analysis that is consistent with 

an absence of dilation of space and time. The change of coordinates is no longer one-to-one. 

On the basis of the principle of equivalence between mass and energy and of the fundamental law of 

(relativistic) dynamics, we propose a second analysis that supports the previous one. It leads us to 

question the principle of invariance of mass at rest, which is accepted in the theory of special relativity 

as it is in classical mechanics.  We present an alternative to this principle: the energy imparted to a 

particle (in a given reference frame) to set it in motion is conserved in the reference frame where this 

particle is at rest.  The invariant is no longer the mass at rest, but the total energy of the particle. This 

hypothesis is consistent with the absence of dilation of space and time. 

The phenomena mentioned above then appear to be the consequence, not of time dilation, but of the 

variation in energy at rest from one frame of reference to another. Since the atoms in the clock that is 

set in motion have greater energy than those in the clock that remains stationary, these two clocks no 

longer deliver the same unit of time1 . 

One chapter is devoted to the consideration of luminous phenomena, comparing the new approach 

we are proposing with that of special relativity.  

The hypothesis of non-invariance of rest mass naturally leads us to consider that gravitation can have 

an influence on it: the gravitational shift of clocks is interpreted as a consequence of the variation in 

the rest energy of atoms as a function of their distance from the gravitational source. This implies that 

gravitation and acceleration cannot be considered to be completely equivalent. 

We show that this hypothesis makes it possible, in the case of weak gravitational fields, to formulate 

simple laws while remaining within the framework of dynamics without space-time deformation: 

- the variation in the potential energy of a particle, with zero or non-zero mass, is proportional 

to its total energy; 

- the variation in total energy of a particle is equal to the opposite of the variation in potential 

energy plus the work of external forces, if any; 

- the rest energy of a particle of non-zero mass varies with its distance from the source. In the 

absence of external forces, the variation in energy associated with rest energy and the 

variation in energy associated with momentum are each equal to half the opposite of the 

variation in potential energy;  

- the fundamental law of dynamics can be applied to determine the relationship between the 

variation in the momentum of a particle of non-zero mass and the corresponding variation in 

energy under the effect of the gravitational field; 

- particles of zero mass are slowed down as they pass through the gravitational field. 

 
1 at least for an atomic clock 
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With these laws, the physical phenomena that have been experimentally verified are correctly 

explained, including the Shapiro effect. There is a difference with the theory of general relativity in the 

evaluation of the gravitational spectral shift, but the result of the Pound and Rebka experiment is still 

explained.  

In conclusion, the note explains the similarities and differences with the theory of general relativity by 

referring to the Schwarzschild metric. 

One conclusion, valid for both special and general relativity, could be as follows: the postulate of 

invariance of mass at rest obliges us, in these theories, to deform space and time in order to simulate 

the invariance of total energy taken into account in the proposed new approach.  

A gravitational field model justifying the laws proposed for weak-field gravitation is presented in a 

separate note entitled "Gravitational Field, Fundamental Principle of Dynamics and Quantum 

Mechanics". This model also makes it possible to take into account a problem that is not limited to two 

bodies and to envisage an extension of the laws outside the weak field.  

 

Of course, there is still a fundamental question that may call into question our current 

representations of matter and energy: since we accept that particles of the same type can have 

different rest energies, what does this difference in energy physically correspond to?  
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2.  Galilean reference frames and changing reference frames 

 

2.1. A reminder of the properties of Galilean reference frames 

An observer is aware of the space that surrounds him and of the time that passes. He can situate an 

event_ i.e. a physical phenomenon2 occurring at a point in space_ in his own frame of reference: 

- firstly, spatially in a reference frame giving space coordinates using graduations based on a 

length standard; 

- secondly, in time, thanks to clocks3 placed at every point of the reference frame, delivering a 

unit of time identical to that of a standard clock; 

Galilean reference frames are those in which space appears homogeneous and isotropic and time 

uniform with respect to physical phenomena, which means that these phenomena are unchanged by 

the operations of translation in space, rotation in space and translation in time. All observers in such a 

frame of reference are equivalent.  

The very definition of Galilean reference frames dictates that two Galilean reference frames in relative 

motion are necessarily in rectilinear and uniform spatial translation motion relative to each other. 

If only one reference frame is used, the length standard and the time standard can be chosen 

arbitrarily. On the other hand, to compare measurements made in two reference frames in motion 

relative to each other, it is necessary to refer to standards common to both reference frames.  

We therefore postulate the existence of such standards that deliver the same units of spatial 

distance and time in all reference frames. The units of space and time are universal. 

On the other hand, we retain the principle of relativity: the laws of physics are invariant to any 

change of Galilean reference frame.  

 

2.2. Clock synchronisation 

The synchronisation of clocks makes it possible to define the notion of simultaneity of two events 

occurring at two different points: in a Galilean reference frame, two events are said to be simultaneous 

if they occur at the same instant given by the clocks placed at these points. 

It is an essential prerequisite for describing the motion of a moving object as it moves from one point 

to another, and in particular for determining its velocity. 

The fact that, in a Galilean frame of reference, two identical experiments, shifted by translation and 

rotation in space, take place with the same durations, theoretically allows clocks to be synchronised 

from any process that can be reproduced identically at different points and in different directions. 

 
2 A physical phenomenon can be simply the positioning of a particle at a given point in time. 
3 A clock is a physical device that samples time using a succession of identical cycles. 
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 Because of the uniqueness of time in a given reference frame, any truly invariant process necessarily 

leads to the same synchronisation, which is therefore unique. Synchronisation can, for example, be 

based on the rectilinear motion of a moving body whose velocity is assumed to be constant whatever 

its position and direction of motion. It is not essential to exchange light rays.  

Let's imagine that we have synchronised clocks separately in two Galilean reference frames in relative 

motion. If, at a given instant t in one frame of reference, all the clocks in the other frame of reference 

mark the same time t' (which can therefore be equal to t by an ensemble shift), time is considered to 

be absolute.  

The equations linking the space and time coordinates of the same event in two Galilean reference 

frames are then the (so-called Galilean) equations of Newtonian Mechanics. The law of addition of 

velocities associated with these equations imposes no limit on the speed of a moving body.    

Conversely, as we will show below, if the times appear to be out of sync from one frame of reference 

to another, a limiting speed has to be considered. 

 

2.3.  Change of reference frame in the theory of special relativity 

We will now look at how the equations for changing reference frames are established in the theory 

of special relativity.  

 

2.3.1.  Taking desynchronisation into account 

Consider two Galilean reference frames Σ (x, y, z, t) and Σ' (x', y', z', t') in motion relative to each other 

parallel to the axis (x). Let t = t'= 0 when the origins of the reference frames coincide; let u be the 

velocity of Σ' relative to Σ.  

The theory of special relativity assumes that reference frames are indistinguishable from one 

another, including in the writing of coordinate equations. There is no such thing as a privileged frame 

of reference.  Note that this assumption goes beyond the strict principle of relativity, which simply 

implies that an experiment is described by the same physical laws in each frame of reference. 

The same event is perceived at the point (x, y, z, t) of Σ and at the point (x', y, z, t') of Σ'.4 Note that, 

since the reference frames are Galilean, the need for invariance by translation in space and time means 

that the equations for changing coordinates must be linear, of the form below (k being a coefficient of 

inverse dimension of a speed): 

 x' = a (x - u t)        (2.1) 

 t' = b (t - k x) 

We assume that the clocks appear to be out of sync from one frame of reference to another. This 

implies that the coefficient k is not zero.  

 
4 The notion of perception of an event is explained in paragraph 2.4.1. 
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Desynchronisation means that at time 0 in one frame of reference, the clocks in the other frame of 

reference mark a non-zero time (apart from that at the origin), varying linearly with their abscissa. 

The inversion of equations (2.1) leads to : 

 x = (1/(1 - k u))(x'/a + u t'/b)                                                                         (2.1') 

 t = (1/(1 - k u))(t'/b + k x'/a) 

Independently of any experiment, it is logical to consider that, since the velocity of the frame of 

reference Ʃ' relative to Ʃ is equal to u, the velocity of Ʃ relative to Ʃ' is equal to - u. 

It follows that:  b = a 

Equations (2.1) become: 

  x' = a (x - u t)                        (2.2) 

 t' = a (t - k x) 

 

2.3.2.   Existence of a limiting speed 

Using equations (2.2), we can write: 

                                              dx'/dt' = (dx - u dt) / (dt - k dx) = (dx/dt - u) / (1 - k dx/dt) 

Whis:                                  v = dx /dt         and             v' = dx'/dt' : 

  v' = (v - u) / (1 - k v)       (2.3) 

If we want to avoid a discontinuity for v' (from -∞ to +∞ ) and given that the value 0 necessarily 

belongs to the permitted interval for v, we must have : 

  v < 1/k [assuming k > 0]. 

By reasoning about the inverse of relation (2.3), we also obtain: 

 v' > - 1/k 

The isotropy of Galilean reference frames means that, if the speed has a limit in one direction, it must 

have the same limit in the opposite direction. It is not necessary to assume that the limit must be the 

same in both reference frames. The velocities v and v' must therefore satisfy a double inequality:  

 - w < v< w        - w' < v'< w'                         (2.4) 

w and w' being the limiting speeds, which must be less than 1/k [assuming k > 0]. 
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Finally, because of the equivalence of the reference systems,  

the condition: v → w leads to: v' → w' 

the condition: v → - w leads to: v' → - w' 

Applied to equation (2.3), these conditions imply:  

                                 (w - u) / (1 - k w) = (w + u) / (1 + k w) 

from which we derive: k = u/w2 

and:                                         w' = w  

The limiting speed is the same in both reference frames. 

                                               w < 1/k   →    u < w  

The relative speed of the reference frames is necessarily less than the limiting speed. 

 

The law of composition of velocities is finally written: 

                                              v' = (v - u) / (1 - u v/w2)           (2.5) 

 

2.3.3.  Lorentz formulae  

The equations for moving from coordinates in Σ to coordinates in Σ' are written as: 

 x' = a (x - u t)                                     (2.6) 

 t' = a (t - u x/w2) 

The inverse equations are: 

 x = a' (x' + u t')                                   (2.6') 

 t = a' (t' + u x'/w2) 

where:  a a' = ϒ2 = 1/(1- u2 /w2) 

If we take: w = c, the speed of light, and a = a' = ϒ (so as not to differentiate between reference 

frames), we obtain Lorentz's formulae:  

 x' = ϒ (x - u t) x = ϒ (x' + u t')      (2.7) 

 t' = ϒ (t - u x / c2)   t = ϒ ( t' + u x'/ c2) 

We can see that it is not essential to start from the postulate of the invariance of the speed of light in 

order to establish this result. It is the existence of a limiting speed (underpinned by the 

desynchronisation of the clocks) which, together with the hypothesis of non-differentiation of 

reference frames, constitutes the key element. 
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2.3.4.  Expansion or contraction of space and time 

With equations (2.7), apart from time desynchronisation, we observe: 

- a dilation of the duration between two events, measured using two different clocks (improper 

time) compared with the duration measured by a single clock (proper time), i.e. in the frame 

of reference where these events have the same spatial position:    

 Δt' = ϒ Δt  if  Δx = 0    and    Δt = ϒ Δt'  if  Δx' = 0 ;  

- a contraction of the lengths measured from the moving frame of reference relative to the 

lengths in the fixed frame of reference:   

  Δx' = Δx/ ϒ  if  Δt' = 0    and    Δx = Δx'/ ϒ  if  Δt =0. 

 

The reality of time dilation 

Does the dilation of time and its corollary, the contraction of length, have a physical reality or is it an 

apparent effect linked to the desynchronisation of clocks? 

Consider the so-called "clock paradox" experiment 5 :  

 

 

 

 

 

Consider two Galilean reference frames: Ʃ and Ʃ' moving at velocity u relative to Ʃ. 

In the reference frame Σ, a clock is set in motion so that it reaches speed u and is in front of O and O' 

at the moment of their conjunction; it moves from O to A at speed u, is slowed down to zero speed at 

B , then accelerated in the opposite direction to the speed - u which it maintains from A to O. The 

moving clock is synchronised with the clocks at O and O', so that all three clocks show the same time 

(= 0) at O,O'. 

If we consider that, once set in rectilinear motion at constant velocity, the mobile clock continues to 

deliver the same unit of time as the standard clock, it is perfectly comparable, during its outward 

journey OA, to the clock at the origin O' of the reference frame Σ'. 

 When the moving clock reaches point A, the times given by the clocks are (according to equations 

(2.7)): 

   clock A: t1 (= l/u)                             moving clock: t1 ' = t1 /ϒ 

 
5 or "twin paradox". 

A O l Δl B 

𝑢ሬԦ 

− 𝑢ሬሬሬሬሬሬԦ 
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The moving clock therefore lags behind the fixed clock opposite it by the ratio 1/ϒ. 

When she returns to A after turning around, the times are :  

   clock A: t2 = t1 + Δt                                 moving clock: t'2 = t1 /ϒ + Δt'     

(Δt and Δt' are the durations induced by the half-turn of the mobile clock) 

By symmetry, the return journey of the moving clock has the same proper duration as the outward 

journey; moreover, as the clocks at O and A are synchronised in Σ, the durations measured in this 

reference frame are also identical 6 .  

The arrival times are:    clock in O: t3 = 2 t1 + Δt                                moving clock: t'3 = 2 t1 /ϒ + Δt'     

Δt and Δt' are fixed durations, independent of t1 ; they become negligible compared with t1 as soon as 

the latter is sufficiently large. It can be said that, on its return journey, the mobile clock should show 

an offset in relation to the clock remaining in A, in a ratio 1/ϒ identical to that of the outward journey. 

Experiments at 7 confirm the physical reality of the total time lag and therefore of the time lag observed 

on the outward journey. As a result, observers in Σ' not only have the impression that durations in Ʃ' 

are shorter than those in their own frame of reference; for them, time really does pass more slowly in 

Ʃ' than in Ʃ.  But the opposite assertion can just as easily be made by observers in Σ' (all they have to 

do is perform the exactly symmetrical experiment from Σ'). 

In the end, this is not a paradox but an effective contradiction that is accepted by the theory of 

special relativity. The time dilation hypothesis makes it possible to construct a theory that is 

mathematically coherent and consistent with observations. But this theory is physically contradictory.8 

  

2.4.  Alternative analysis to that of special relativity 

2.4.1. Principles 

How can we avoid the contradiction that has just been highlighted? 

A simple assumption is that time flows universally (which means that there is no dilation of 

durations) but that the synchronisation of clocks does not allow it to be expressed as absolute time, 

because of the existence of a limiting speed. On the other hand, space is considered to be absolute 

(no contraction of lengths between reference frames).9 

 
6 The mobile clock moves identically in both directions and therefore complies with the conditions for a 
synchronisation experiment (see 2.2.).  
7 These are experiments carried out with atomic clocks (the first one being by Hafele and Keating in 1971). 
8 The objection was raised in 1922 by Painlevé against Einstein (see Vincent Borella, "A propos du paradoxe de 

Langevin", Philosophia Scientiæ, vol. 1, no. 1 (1996), pp. 63-82). It has been repeated many times since. Several 
solutions have been proposed to rule it out, but no general agreement has been reached. 
9 Let us observe that the conservation of distances and durations when changing reference frames could 
constitute a necessary condition for the validity of the principle of relativity. 
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Galilean reference frames in relative motion are linked by the definition of a common instant of time 

origin when the origins of the spatial reference frames coincide. 

Assuming the universality of time, every event is characterized by the duration T, which separates 

if from the common instant of origin. We will say that an event is "produced" in a reference frame 

if the time displayed by the clock at the point to which it is attached is identical to that duration.  

Consider an event “produced” at point (x , T) in frame of reference Ʃ. In a reference frame Ʃ' moving 

relative to Ʃ, the event is perceived at (x', t'). Because of the desynchronisation of the clocks, t' is 

different from T (unless x' = 0); but, for the observers of Ʃ, the time elapsed at the clock of abscissa x' 

is indeed equal to T (we will see in the next paragraph what are the equations for changing coordinates 

that allow us to conserve times and distances).  

Now we must understand that, if we start from an event “produced” in Ʃ' at the point with coordinates 

(x', t'), this event will not be perceived in Ʃ at (x, T) but at a point with different coordinates (x1 , t1 ). 

This is not surprising, since the event in Ʃ' occurs after a time T'= t' (≠ T). 

The change of coordinates is no longer one-to-one, as is the case in the theory of special relativity. 

This is because an event, considered as "produced" in the frame of reference where the clock 

displays the duration that has actually elapsed, is "perceived" at a different time in another moving 

frame of reference, and we introduce no correction for time dilation. 

  

2.4.2. New coordinate change equations 

Let's start with an event “produced” at point (x, t) in Σ. Let's take equations (2.6):  

 
x' = a (x - u t)

      

 t' = a (t - u x / w2)  

It is easy to check that the absence of dilation of distances and durations is simply expressed by a = ϒ2. 

Then we have:  

 Δx' = Δx  if  Δt' = 0           and           Δt' = Δt  if  Δx' = 0  

Measured in the Σ' reference frame, distances and durations are indeed equal to what they are in Σ.  

 The coefficient ϒ2 reflects the fact that, at a given instant in Σ, this reference frame corresponds to a 

distorted image of Σ' (the clocks appear to be out of sync), which is a kinematic effect. Whereas, in the 

theory of special relativity, the ϒ coefficient reflects desynchronisation coupled with a real 

deformation of space and time (ϒ = ϒ2 / ϒ). 

The contradiction highlighted in paragraph 2.4.2 (clock paradox) disappears. 

 

 

Important consequence: the delay of a moving clock can no longer be attributed to time dilation. 10 

 
10 See section 3.3.1.  
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Finally, the coordinate change equations can be written as : 

- for an event “produced” in reference frame Ʃ : 

 x’ = ϒ2 (x - u t) x = x’ + u t’                 (2.8) 

 t’ = ϒ2 (t - u x / c2)   t = t’+ u x’ / c2 

- for an event “produced” in reference frame Ʃ' : 

 x = ϒ2 (x’ + u t’) x’ = x - u t                 (2.8a) 

 t = ϒ2 (t’ + u x’ / c2)   t’ = t - u x / c2 

 

How can the equations above be applied to describe the conjunction of points with coordinates x in Ʃ 

and x' in Ʃ'? 

For each observer, the conjunction of the coordinates 

x and x' is perceived as an experience taking place in 

his own frame of reference. 

For the observer of Ʃ, this is the movement at velocity 

u of a moving body (x') passing through x at time t. 

Applying equations (2.8) :   

               x = x' + u t '1                                    (2.9) 

 t = t'1 + u x'/c2 

For the observer of Ʃ', this is the displacement at 

velocity - u of a moving body (x) passing through x' at 

time t'. 

Applying equations (2.8a) :  

  x' = x - u t1                                                            (2.10) 

 t' = t1 - u x/c2 

It comes immediately: 

                            t1 = t' 1 = (x - x')/u = t''                  (2.11) 

t1 and t'1 therefore represent the time t'' given by the 

Galilean transformation.  

We have:           t = t'' + u x'/c2    and    t' = t'' – u x/c2 

It is important to note that we are dealing with two different experiences. 

Finally, what we have just said can be translated into the following statement: 

The conjunction of the coordinates x in reference frame Ʃ and x' in reference frame Ʃ' constitutes a 

double event, produced at different times t and t'. On the other hand, the two events are perceived 

at an identical time in the two reference frames, equal to the duration given by the Galilean 

transformation. 

(x,t) 

(x',t'1) 

Ʃ 

Ʃ' 

(x,t1) 

(x',t') 

Ʃ 

Ʃ' 
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The diagrams below illustrate the perception of the conjunction of coordinates x and x' 

according to whether we take Newtonian mechanics, special relativity or the proposed new 

approach. Imagine that contact between x and x' triggers the taking of two photos, one from 

frame of reference Σ (at x), the other from frame of reference Σ' (at x'). 

 

 

 

  

    Mécanique newtonienne                      Relativité restreinte                             Nouvelle approche 

             T = (x - x’)/u                                        t = (x - x’/γ)/u                                     t = (x - x’/γ2)/u        

                                                                             t’ = (x/γ - x’)/u                                    t’ = (x/γ2 - x’)/u             

Let's now consider the case of an event "produced" in one frame of reference Σ and "perceived" in two 

other frames of reference Σ' and Σ''.       

Let u' be the velocity of Σ' relative to Σ, u'' the velocity of Σ'' relative to Σ.  

From equations (2.8) we obtain the equations for changing coordinates from Σ' to Σ'' : 

 x’’ = a’’ (x’ – U t’)            where: a’’ = (1 – u’ u’’/w2)/(1 – u’’2/w2) 

 t’’ = a’’ (t’ – U x’/w2)                            U = (u’’ – u’)/ (1 – u’ u’’/w2) 

Finally, what can we say about an event "perceived" in Σ' and Σ'' without knowing in advance the frame 

of reference in which it is "produced"? 

Knowing the coordinates (x', t') and (x'', t'') of the event, we can use the equations above to determine 

the values of a'' and U and then those of u' and u'', thus defining the event's reference frame. 

 

Conclusion: 

In Newtonian mechanics, there is no distinction between "produced" and "perceived" events, because 

time is absolute. 

In the theory of special relativity, no such distinction is made either, by imposing a one-to-one change 

of coordinates. This amounts to assuming that the conjunction of two points with coordinates x in Ʃ 

and x' in Ʃ' constitutes the same event "produced" simultaneously in both reference frames.  

This is what leads to the contradiction: if time is not absolute, an event cannot be considered as 

"produced" in all frames of reference, with the exception of the event used to define the common 

instant of origin.  
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3.  Relativistic approach based on the equivalence between mass and energy 

 

This chapter sets out an alternative approach to the problem, based on energy considerations, which 

provides justification for the alternative analysis presented in sub-chapter 2.4. 

 

3.1.  Relationship between energies calculated in two Galilean reference frames 

3.1.1. Particle physics has validated the principle of equivalence between mass and energy.  

We will show that we can deduce the existence of a limiting speed from this principle.  

We postulate that, in any Galilean reference frame Σ (x, y, z, t), there is the following relationship 

between the mass11 m of a particle and its total energy E :  

                                            E = m c 2   (3.1) 

m depends on the velocity of the particle. This is the inertial mass that comes into play in the definition 

of the particle's momentum. 

The factor c is a coefficient that is independent of m and has the dimension of a speed. For the 

moment, c does not necessarily refer to the speed of light because the reasoning that follows does not 

refer to light rays. 

 

3.1.2. We restrict ourselves to a one-dimensional problem by considering a particle moving parallel to 

the axis (x). This particle is subjected to the action of a force F also parallel to the axis (x). Let v be the 

velocity of the particle.  

The fundamental equation of dynamics is written: 

        d(mv)/dt = F                       (3.2) 

The change in energy is equal to the work of the force: 

 dE = F dx,            i.e.     dE/dt = F dx/dt = F v     

or:                                        c2 dm/dt = F v                    (3.3) 

From equations (3.2) and (3.3) we derive: 

 c2 dm/dt = v d(mv)/dt       

 c2 dm/dt = mv dv/dt + v2 dm/dt 

 (dm/dt)/m = v (dv/dt)/(c2  - v2 ) = - (d(c2  - v2 )/dt)/(c2  - v2 )/2  

 
11 The term "mass" is not reserved for rest mass. 
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Integrating gives: ln (m) = ln ((c2 - v2) -1/2) + constant 

And, finally, let m0 denote the rest mass of the particle in Σ:  

 m = m0 / (1 - v2 /c2) 1/2       (3.4) 

Therefore: E = m0 c2 / (1 - v2 /c2) 1/2       (3.5) 

This expression for E is the one verified by experiments. 

c appears to be the limit of the speed of a non-zero mass particle. 

On the other hand, if we denote the momentum by p (= mv), we have the relation: 

 E2 – p2 c2  = m0 2 c4                                      (3.6) 

   

3.1.3. Let us now consider a second Galilean reference frame Σ' (x', y', z', t') in motion relative to the 

first, parallel to the axis (x), at velocity u. The relationship between mass and energy is written: 

  E' = m' c 2                                                 (E'0 = m'0 c2 for the particle at rest in Σ') 12 

The expressions for mass and energy in reference frame Σ' are: 13 

  m' = m'0 /(1 - v'2 /c2) 1/2       (3.4') 

  E' = m'0 c2 /(1 - v'2 /c2) 1/2       (3.5') 

Whis:                                   u = u / c        v = v / c     v' = v'/ c  

The law of velocities composition (2.5) is written as:  

 v' = (v - u)/(1 - u v)        

This law is well verified by experiments involving interactions between particles. 

We therefore have: (1 - v’2) = ((1 - u v)2 - (v - u)2)/(1 - u v)2 

or : (1 - v’2) = (1 - u2)(1 - v2)/(1 - u v)2     (3.7) 

 

3.1.4.  The values of the energy of the particle expressed in the two reference frames are therefore 

linked by the relation below: 

 E' = (m'0 /m0)  E (1 - u v)/(1 - u2)1/2  (3.8)      

 
12 The limiting speed c is assumed to be identical in all reference frames, so as not to impose any differentiation 
between them in terms of the laws of physics. On the other hand, the masses at rest do not have to be 
identical, as we will see in sub-chapter 3.2. 
13 In application of the principle of relativity, the fundamental law of dynamics is expressed in the same way in 
Σ' as in Σ. 



16 
 

 The inverse relationship is written: 

 E = (m0 /m'0 )  E' (1 + u v')/(1 - u2)1/2  (3.8') 

 

3.2.  Choosing an energy invariant 

Relations (3.8) and (3.8') show the ratio m'0 /m0 . The value to be given to this ratio depends on the 

choice of a relationship between the particle's rest energies in the two reference frames. 

There are two reasonable hypotheses: 

- the invariance of rest mass (cf. 3.2.1.); 

- the conservation of total energy by change of reference frame (cf. 3.2.2.). 

 

3.2.1. Invariance of the rest mass of any particle  

The first hypothesis postulates that the rest mass of a particle is a characteristic intrinsic to the 

particle, and therefore invariant to any change of reference frame. This postulate, which is identical 

to that of classical mechanics, is also the postulate of special relativity. Energy at rest has the same 

value in all reference frames. 

With m'0 /m0 = 1, equations (3.8) and (3.8') become : 

 E’ = E (1 - u v)/(1 - u2)1/2          (3.9) 

 E = E’ (1 + u v’)/(1 - u2)1/2         (3.9’) 

Given p = m c v the momentum, and assuming ϒ = 1/(1- u2/c2)1/2 , we get: 

 E' = ϒ (E - u p c)        (3.10) 

We find the usual relativistic relationship. 

 

Let us show that the rest mass invariance assumption is compatible with Lorentz's formulae.  Let's start 

with the equation of dynamics in Σ' 14: 

 d(m'v') = F dt' where m' = Γ' m0    and Γ' = 1/(1 - v'2 )1/2 

or :  d(Γ'v') = (F/m0 ) dt' 

The relation (3.7) and the law of velocities composition (2.5) allow us to write Γ' as : 

 

14 we admit that, when  F ሬሬԦis collinear with vሬԦ, its value is preserved by change of frame of reference. 
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 Γ' = ϒ Γ (1 - v u)                        (where     Γ = 1/(1 - v2)1/2) 

 Γ' v' = ϒ Γ (v - u)   

 d(Γ' v') = ϒ (d(Γ v) - u dΓ)                                     (3.11) 

Let us show that:  u dΓ = d(Γ v) u v 

 d(Γ v) u v = Γ u v dv + u v v dΓ 

dΓ = Γ3 v dv  →      d(Γ v) u v = u/Γ2 dΓ + u v2  dΓ = u (1/ Γ2 + v2  )dΓ = u dΓ 

(3.11)      →         d(Γ' v') = ϒ (d(Γ v) - u v d(Γv))                                  (3.11')        

The equation of dynamics in Σ is written: 

 d(Γv) = (F/m0) dt 

Eliminating F/m0                     (3.11')    →      dt' = ϒ (dt - u v dt) 

v = dx/dt     →      dt' = ϒ (dt - (u/c2) dx)         (3.12) 

Lorentz's formula for time co-ordinates is clearly applicable. 

 

3.2.2.  Conservation of total energy by change of reference frame 

To understand this second hypothesis, let's imagine the following experiment: 

- two identical particles, with the same rest mass m0 in Σ, are immobile in this frame of 

reference; they have a  velocity equal to - u in Σ' ; 

- an observer of Σ increases the speed of the first particle from 0 to u by supplying it with 

energy;  

- an observer of Σ' reduces the speed of the second particle from - u to 0 by withdrawing energy 

from it; 

- the two particles are now at rest with respect to Σ'; what is the rest mass of each in Σ'?  

 

If the answer is that it remains equal to m0 , then the mass at rest is invariant. 

The second hypothesis postulates that the difference between the rest energies of a particle is equal 

to the energy supplied to it (or withdrawn from it) in order to move from zero speed in one frame 

of reference to zero speed in the other frame of reference; the particle's total energy is transferred, 

as it were, from one frame of reference to the other. 
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Kinetic energy is therefore no longer considered to be "lost" when moving from one frame of reference 

to another, as is the case with the assumption of invariance of mass at rest.15 

More precisely, the rest energy of a particle in reference frame Σ' is equal to its rest energy in reference 

frame Σ : 

- increased by the additional energy given to it in frame of reference Σ if the action on 

the particle takes place in frame of reference Σ, then: m'0 = ϒm 0 

- reduced by the energy decrement it undergoes in frame of reference Σ' if the action 

on the particle is exerted in frame of reference Σ', then: m'0 = m0 /ϒ 

In fact, depending on the action exerted, m'0 can take any value between m0 /ϒ and ϒm0 . We can say 

that the rest energy of a particle depends on its history. 

 

Let us now observe that an experiment must necessarily be defined in a reference frame where we 

know the rest energy of the particles and where we can define the actions exerted. The energies 

involved are exchanged within this frame of reference. Let's call this frame of reference Σ.16 

The transition to the reference frame Σ' in motion is made by adopting a rest mass m'0 = ϒ m0   (the 

action to bring the particle to rest in Σ' takes place in Σ)17 . Equation (3.8) becomes: 

  E' = E (1 - u v)/(1 – u2)                    (3.13) 

And the inverse equation (3.8') gives:      

     E = E' (1 + u v')                                              (3.13') 

Equation (3.13) can also be written as: 

                               E' = ϒ2 (E - u p c)        (3.14) 

Looking on the equations for changing coordinates, we can see straight away that Lorentz's formulae 

are no longer respected.  

With m'0 = ϒ m0   equation (3.12) becomes:  

                                            dt' = ϒ2 (dt - (u/c2) dx)                       (3.15) 

 
15 The term "kinetic energy" becomes inappropriate. We have to consider that the acceleration imparted to the 
particle has two effects: it increases its momentum and it increases its total energy. How does this increase in 
stored energy affect the particle? Its lifetime is increased (see paragraph 3.3.1). We will also see in Chapter 5 
(Gravitation) that, when a gravitational source is in motion, it is its total energy that must be taken into account 
to determine its gravitational action, just as it is the relativistic mass that comes into play in the fundamental 
equation of dynamics.      
16 Here we return to what was said in Chapter 2 about events. The experiment is considered to be "produced" 
in frame of reference Ʃ. 
17 If, for an experiment carried out in Σ, we know the rest mass m'0 in Σ', the rest mass to be retained in Σ is 
obviously: m0 = m'0 /ϒ. 
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The coordinate change equations can then be written as : 

 x' = ϒ2 (x - u t)                                 (3.16) 

 t' = ϒ2 (t - u x/c2)                       identical to equations (2.8) 

 

or, taking the inverse equations: 

 x = x' + u t'                                    (3.16') 

 t = t' + u x'/c2 

If we started with an experiment in Σ', the equations would be : 

 x = ϒ2 (x' + u t')                     (3.16a) 

                                              t = ϒ2 (t' + u x'/c 2)                                  identical to equations (2.8a) 

A single set of coordinates [x',t'] in reference frame Σ' can therefore correspond to two distinct sets in 

reference frame Σ : 

- by the equations (3.16'): [x, t] 

- by equations (3.16a): [ϒ2  x, ϒ2  t] 

We explained in sub-chapter 2.4 why there is no contradiction. 

 

3.3.  Consequences of total energy invariance 

3.3.1.  Influence of energy on clock rhythm 

We saw in paragraph 2.3.4 that a moving (atomic) clock lags behind a clock that remains stationary in 

a reference frame. With our hypothesis 18 , this can only be explained by admitting that the energy 

level influences the rhythm of the clock. 19 

  

If T is the period of a clock at rest and T' the period of the same clock set in motion at velocity u, then: 

 T’/T = E’0/E0 = m’0/m0 = ϒ =1/(1- u2/c2)1/2    (3.17) 

Note that if Δt and Δt' are the durations measured by the clocks, then: 

 E0 Δt = E'0 Δt'                                  (3.18) 

The product of energy and time measured by the clock is an invariant. 

 
18 See § 2.4.2.  
19 We also propose a simple reasoning explaining this influence in the case of an atomic clock using caesium 
atoms.  
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Depending on the choice of invariant made for energy, we are therefore led to different 

interpretations for certain phenomena considered as the basis for experimental verification of the 

theory of special relativity: 

- In the RR framework, the delay of moving clocks and the increase in the lifetime of atmospheric 

muons travelling at high speed are attributed to the dilation of time between reference frames; it is 

assumed that the clocks continue to deliver the same unit of time;  

- with the choice of conservation of total energy by change of reference frame, these phenomena are 

attributed to the modification of the rest energy of the atoms of the atomic clock or that of the muons, 

due to the energy received to pass from the reference frame Σ to the reference frame Σ'; the flow of 

time is not modified, but the clocks no longer deliver the same unit of time. 

Can this influence of energy on the rhythm of clocks be extended to types of clocks other than atomic 

clocks? 

Mechanical clocks should not be affected insofar as all their constituent elements undergo the same 

relative variation in mass. For example, a simple oscillator of mass m0 and stiffness k is characterised 

by a period T = 2π (m0 /k)1/2  which remains unchanged if the stiffness varies with the mass. 

A light pulse clock can be schematised as a tube closed by two parallel mirrors between which photons 

travel back and forth, the number of paths is counted by a mechanism. The universality of the speed 

of light20 means that such a clock is not affected by being set in motion at rectilinear and uniform 

velocity. 

 

3.3.2.  Concept of space and time 

Special relativity can be associated with the conception of a space-time considered as an affine space 

of dimension 4. In the vector space associated with this affine space, time differs from space 

coordinates in the definition of the scalar product, which is not Euclidean: the product of time-type 

coordinates is assigned the opposite sign to that of the products of space-type coordinates.  

This leads us to define the square of the space-time interval between two events as : 

 Δs2 = Δx2 + Δy2 + Δz2 - c2 Δt2                                              (3.19) 

In special relativity, this quantity is invariant to any change of Galilean reference frame. It is easy to 

show that Lorentz's formulae can be deduced from this invariance. 

The elegance of this mathematical formulation undoubtedly contributed greatly to the acceptance of 

the theory, despite the counter-intuitive nature of a different flow of time in two reference frames in 

relative motion and the contradiction that results. 

In our proposed approach, we reject this conception of space and time. The flow of time remains 

universal and completely independent of the reference frame, as in Newtonian mechanics. 

 
20 See § 4.1.2. 
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On the other hand, time is not absolute because of the existence of a limiting speed, which is identical 

in all frames of reference because of the principle of relativity: the clocks in the moving frame of 

reference appear to be out of sync with those in the frame of reference considered to be fixed. 

We have shown that the solution obtained for the reference frame change equations is consistent with 

the (Einsteinian) hypothesis of conservation of the total energy of a particle, in place of the invariance 

of the rest mass.  

The spatial distance between two events remains invariant in all Galilean reference frames, as in 

Newtonian Mechanics.  

 

3.3.3.  Preferred reference frame, true velocity and true energy 

Equation (3.13) shows that E' is different from E, except for v = u. 

The conservation rule for total energy means that, in any reference frame, the energy of a particle 

at rest is "true" energy, representing the maximum amount of energy that can be released.21   On 

the other hand, the total energy attributed to a moving particle is not necessarily "true" energy.  

The reference frame in which an experiment is defined plays a key role: the energy at rest is known, 

as are the actual energy transfers. The energy calculated in this frame of reference is "true" energy at 

all times. This property can be made the distinguishing feature of this privileged frame of reference 

compared with other frames of reference. 

The velocity of the particle must therefore also be considered as a "true" velocity in the reference 

frame of the experiment.  

As a function of velocity and total energy, the fundamental equation of dynamics is written: 

 (v/c) d(E v/c) = dE 

In the reference frame of the experiment, this equation involves a "true" velocity and a "true" 

energy, whereas these are apparent values of these quantities in another reference frame.  

  

 
21 But, as we saw in paragraph 3.2.2, two identical particles at rest in the same frame of reference can have 
different energies, depending on the actions they have undergone. 
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4.  Taking account of light phenomena 

 

4.1.  Speed and frequency of electromagnetic waves 

4.1.1.  Speed of light as the limiting speed 

Light is electromagnetic radiation. According to Maxwell's electromagnetic theory, this radiation can 

be represented as an electromagnetic wave, which propagates uniformly in all directions from its 

source, its speed c being related to two constants : 

- the dielectric permittivity of vacuum: ε0 

- the magnetic permeability of vacuum: μ0 

by the relation: c2 = 1 / ε μ0 

It seems logical to assume that ε0 and μ0 are universal constants, having the same value whatever the 

Galilean reference frame considered, and therefore that the value of c does not depend on the 

reference frame either: light emitted by a fixed source in a Galilean reference frame propagates at 

speed c in this reference frame. 

On the other hand, electromagnetic theory predicts that a flash of light containing energy E must have 

impulse22 E/c, which is verified by experiment. It follows that equation (3.6) linking energy and 

momentum remains valid for a flash of light, provided that its energy and momentum are carried by 

particles of zero mass: photons.  

Equation (3.5) shows that it is possible to associate a finite energy with a particle of infinitely small 

mass when its speed tends towards the limiting speed c. 

The speed of light is therefore the limiting speed for massive particles. This is verified by experiment. 

The coordinate equations (2.7) and (3.16) are therefore equally applicable to the propagation of light 

waves. 

 

4.1.2.  Universality of the speed of light 

In the theory of special relativity, the invariance of the space-time interval (cf. equation 3.9) leads 

immediately to the following result: the speed of light is equal to c in all reference frames, whether 

the source is fixed or moving and whatever the direction of propagation.  

In the alternative approach based on the conservation of total energy, the emission of a light beam 

must necessarily be related to the reference frame where its source is fixed and its speed equal to c. 

The invariance of distance and duration in all reference frames23 means that the “true” velocity of light 

remains equal to c, whatever the reference frame used for calculation. 

 
22 The impulse of a photon is the momentum it gives up when it is absorbed. 
23 c. § 3.3.2. 
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On the other hand, the apparent velocity of light is less than c in directions other than that of the 

displacement of the moving frame of reference (also equal to c for propagation perpendicular to that 

of the displacement of the frame of reference).                          This is easily verified by checking that 

the expression (Δx'2 + Δy'2 + Δz'2 - c2 Δt'2 ) is negative when (Δx2 + Δy2 + Δz2 - c2 Δt2 ) is zero. 

 

4. 1.3.  Doppler effect 

As mentioned above, according to Maxwell's theory, the propagation of a light wave is defined in 

relation to its source; we need to reason in the frame of reference where this source is fixed. 

When an observer moves relative to a light source, the frequency he perceives changes. Calculated in 

the reference frame of a source of natural frequency νS
24 , this frequency is : 

                ν = (1 - u/c) νS  if the observer moves away from the source at velocity u>0;                   (4.1) 

                ν = (1 + u/c) νS  if the observer moves closer to the source.  

In the observer's frame of reference, we have to take into account : 

- in the case of special relativity, the dilation of durations; the periods measured are reduced, 

the frequencies increased, they become :  

                  ν = ϒ(1 - u/c) νS = ((1 - u/c)/(1 + u/c))1/2 νS      (4.2) 

 and   ν = ϒ(1 + u/c) νS = ((1 + u/c)/(1 - u/c))1/2 νS 

       

- in the case of conservation of total energy, equations (4.1) remain valid if the observer's clock 

delivers the same unit of time as that of the source.25 In the terrestrial experiments that we 

can carry out, this is not the case: the observer is set in motion relative to the source, or the 

source is set in motion relative to the observer. 

In the first hypothesis, the observer's clock beats at a slower rate and the apparent frequency 

of the wave increases; we find equations (4.2). In the second case, the same equations apply, 

but the source, which has seen its energy increase by a factor of ϒ, sees its natural frequency 

increase by the same factor to ϒ νS .26 

Equations (4.2) are verified by experiments. 

 
24 The natural frequency is the frequency of the source in the reference frame where it is at rest. 
25 The transition from the reference frame of the source to that of the observer takes place without any time 
dilation (cf. § 3.3.1.). 
The result can be verified from the wave equation in the reference frame where the source is fixed. 
This equation is written :          A = A0 sin(ω(t-x/c)) for a wave of  speed + c. 
The change of coordinates gives (equations 3.16'): A = A0 sin(ω(t'+ u x'/c2  - x'/c - u t'/c)) 

              u being the observer's velocity relative to the source. 
or :                                                                                     A = A0 sin(ω(1 - u/c)(t'- x'/c)) 
26 see 4.2. below; photon energy is proportional to frequency.  
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4.1.4.  Interpretation of the spectral shift of distant sources 

In the context of special relativity, it is easy to relate the frequency observed in a terrestrial reference 

frame to the velocity of the source, since the frequency at rest is assumed to be identical in all 

reference frames: all we have to do is apply equations (4.2). 

In the case of the conservation of total energy, the frequency of the source is not known a priori 

because, for the same element, the rest mass can be different from one reference frame to another. 

If we assume that the natural frequency of the source is the same as in the terrestrial reference frame, 

the equations (4.1) apply; the result is therefore different from that given by the theory of special 

relativity. 

However, the difference only becomes significant when the v/c ratio can no longer be considered 

small compared to 1. 

 

4.2.  Energy associated with an electromagnetic wave 

The corpuscular representation of electromagnetic radiation consists of considering it as made up of 

photons, each carrying a quantum of energy.  

 

4.2.1.  Energy of a photon 

In the frame of reference where the source is fixed, the quantum of energy of a photon is given by the 

Planck-Einstein relation :  

 ES = h ν S 

 h being Planck's constant and νS the frequency of the wave associated with the photon.  

This is the "true" energy of the photon.  

 

How does the energy of a photon vary when the reference frame changes? 

We are going to check that the equations in sub-chapter 3.2 remain valid for particles of zero mass. 

This condition is necessary to satisfy the principle of relativity in the case of photons interacting with 

matter. 

Consider the case of a particle initially at rest in Σ, of energy E0, having absorbed a photon of energy 

ES emitted in the same frame of reference : 

-  its energy is: E = E0 + ES ;  

-  its momentum is equal to the impulse of the absorbed photon:    

                E v/c2 = ε ES /c where: ε = ± 1 depending on whether the photon has a speed ± c ;  

- its speed is therefore such that: v/c = ε ES / E .  
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Let u be the velocity of the moving frame of reference Σ' relative to the source. Equations (3.9) and 

(3.13) giving the energy E' in Σ' as a function of E can be written : 

E' = a (1 - u v/c2) E where:   a = ϒ (assuming invariance of rest mass)                                                   (4.3) 

       a = ϒ2 (invariance of total energy, experiment in Σ) 

 

Given the expression for v given above, E' can be written as : 

       E' = a (1 - u ε ES / E/c) E = a (E - ε u ES /c) 

If we denote by E'φ the energy of the photon in Σ', E' can also be written as : 

       E' = a E0 + E'φ = a (E - ES ) + E'φ  

Therefore :        a (E - ε u ES /c) = a (E - ES ) + E'φ  

From this we derive :              E'φ = a (1 - ε u/c) E S                                                                                                                                                     (4.4) 

We find equation (4.3) with  v = ε c. 

 

a) In special relativity, equation (4.4) leads to :  

                                             for v = c :  E'φ /ES = ((1 - u/c)/(1 + u/c))1/2                                       (4.5) 

                                            for v = - c :  E'φ /ES = ((1 + u/c)/(1 - u/c))1/2 

The Doppler effect relationships (4.2), linking apparent and natural frequencies, are used again. 

For the observer in reference frame Ʃ', the photon has an apparent energy h ν corresponding to its 

apparent frequency. 

 

b) Assuming the conservation of total energy, for an experiment carried out in reference frame Ʃ where 

the source is fixed (a = ϒ2 ):   

 E'φ = ((1 - ε u/c) (1 - u2 /c2 )) ES   = Es/(1 + ε u/c)                                     (4.6)    

     for v = c:        E'φ /ES = 1/(1+ u/c)           

 for v = - c:     E'φ /ES = 1/(1- u/c) 

These relationships are not identical to the relationships (4.1) relating to frequencies:  

 for v = c:       the observer moves away from the source and ν = (1 - u/c) ν S  

 for v = - c:    the observer moves closer to the source and      ν = (1 + u/c) ν S  

The apparent energy of the photon in Ʃ' is equal to ϒ2 h ν. 
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c) What about an experiment carried out in reference frame Ʃ' where the source is mobile? 

The same reasoning as above leads to the relationship below (obtained by replacing u by - u in (4.6) ): 

 ES = ϒ2 (1 + ε u/c) E'φ = E'φ /(  1 - ε u/c)     

or :        E'φ = (1 - ε u/c) E S                       (4.8)    

This relationship is identical to that giving the apparent frequency. The photon therefore has an 

apparent energy in Ʃ' equal to h ν.  

Whether the source is fixed or moving, the energy of the photon is therefore given by the product  

h ν in the reference frame of the experiment. 

 

4.2.2.  Power of an electromagnetic wave 

An electromagnetic wave can be considered as a flow of photons. But, conversely, does any flow of 

photons constitute an electromagnetic wave? 

We don't think so. The frequency of the wave not only defines the energy of the photons, but also 

their sequence in time. A photon can therefore be considered as a fragment of an electromagnetic 

wave (of frequency ν1 ), but a succession of photons (at frequency ν2  ≠  ν1 ) is just a succession of wave 

fragments.  

What consequences does this have for the power of a wave?  

Let's imagine the following experiment: 

A monochromatic wave of frequency ν carries a flux of N photons per second across a surface S; its 

power is equal to :   N h ν /S. 

The photon flux results from both the succession and the superposition of photons. If we keep the 

superposition unchanged, transforming this wave into a wave of frequency ν' means changing the 

photon flow rate to (ν' /ν) N photons per second. 

The power becomes : (ν' /ν N) h ν'/ S = (ν'2 / ν2 ) (N h ν /S) 

We must therefore consider that the power of an electromagnetic wave varies as the square of the 

frequency. 

 

We will see in the next chapter that electromagnetic waves can be distorted by a gravitational field. 

The emission frequency and the energy-related frequency can then be different. 
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5.  Gravitation 

 

5.1.  Formulation of the laws of gravitation 

The theory of general relativity retains the principle of invariance of mass at rest. It also retains the 

equality between gravitational mass and inertial mass and establishes the principle of equivalence 

between gravitation and acceleration.  

In our proposal, we retain the equality between gravitational mass and inertial mass. However, we will 

see that gravitation and acceleration cannot be considered to be completely equivalent. 

An initial analysis based on experimental observations (Newtonian law of gravitation, gravitational 

shift of clocks) will enable us to establish the laws of gravitation in conditions of weak gravitational 

field and to identify the principles that we propose to retain. 

 

5.1.1.  Weak gravitational field laws 

Let's consider a massive body of mass M, constituting the gravitational source. In the reference frame 

(assumed to be Galilean) linked to this body, a particle 27 located at distance r has a non-zero rest 

energy E0  (rest mass m0). 

Throughout this chapter we shall consider that M is very large compared with m0 so that we can regard 

M as invariant and therefore neglect the influence of m0 on M. We shall also assume that the field is 

spherically symmetrical. 

We assume that the action of the massive body on the particle can be described using a gravitational 

field which gives the particle a potential energy Eg.  28 

Throughout Chapter 5, we will assume that the ratio GM/c2 r is small compared to 1 (weak field).29 

We assume that, in this case, the Newtonian law of gravitation is valid at zero speed. 

 

Energy equations 

Let's exert an action on the particle at rest so as to move it away (at infinitesimal speed) by a distance 

dr in a radial direction with respect to the source. 

 

 

 
27 Remember that, in this note, the term particle applies to any physical object that can be modelled as a point 
to describe its motion. 
28 This proposal is justified in the note entitled "Gravitational field, Fundamental Principle of Dynamics and 
Quantum Mechanics" setting out the model chosen for the field.   
29 G is the universal gravitational constant. 
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 How does the particle's energy vary?  

 According to the Newtonian law of gravitation (G being the universal gravitational constant), the force 

required to move the particle is just greater than :  

 Fx = GM m0 /r 
2          (5.1) 

For an incremental displacement dr, the external energy supplied is equal to the work of the force : 

 dEx = (GM m0 /r 
2) dr = (GM/ c2r2 ) E0  dr 

Following on from what was developed in paragraph 3.2.2, we extend the questioning of the 

invariance of mass at rest by considering that, if a particle is subject to the gravitational influence of 

a massive body, its energy at rest (in the reference frame of the massive body) varies with its 

distance from this body. 

This variation in resting energy is consistent with the gravitational offset of the clocks: clocks on the 

ground deliver shorter durations than clocks on board satellites. In line with what was explained in 

paragraph 3.3.1, this can be interpreted as linked to an increase in the resting energy due to the 

increase in the gravitational effect. So, in accordance with the experimental results, the variation in 

energy is expressed by : 

 dE0 = - (GM/ c2r2) E0 dr                                                                           (5.2) 

This assumption of variation in rest energy in the gravitational field (in the same reference frame) 

implies that the effect of gravitation cannot be completely assimilated to that of acceleration.  

The conservation of the overall energy of the system implies that the variation in potential energy 

is equal to: 

 dEg0 =  dEx - dE0 = 2 (GM/ c2r2) E0  dr   

This formulation logically leads us to extend the result by replacing E0 by E (total energy of the particle) 

when the particle is in motion: 

 dEg = dEx - dE = 2 (GM/ c2r2) E dr                      (5.3) 

In so doing, we consider that gravitation is a phenomenon of energy exchange between the 

gravitational field and the particle, involving the latter's total energy. 

Finally, the energy equations governing the motion of the particle in the gravitational field can be 

written incrementally as follows: 

 dE0 = - (GM/ c2r2) E0   dr                                    (5.2) 

 dE = dEx - 2 (GM/ c2r2) E dr                                     (5.4) 

These equations are not contradictory because, in the absence of external forces, the particle cannot 

be at rest and we necessarily have: E ≠  E0 .  
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By integration, equations (5.2) and (5.4) lead to the relationships below: 30 

- for energy at rest :  

  E0 = E0∞ exp (GM/ c2 r) ≈ (1 + GM/ c2 r) E0∞                                 (5.5) 

- for total energy (in the absence of external forces) : 

 E = E∞ exp (2 GM/ c2 r) ≈ (1 + 2 GM/ c2 r) E∞                                (5.6) 

 

Gravitational potential 

By choosing Eg = 0 at infinity, in the absence of external forces, the potential energy is:   

             Eg = E∞ - E ≈ - (2 GM/ c2 r) E∞                                                                           (5.7)  

  Assuming m0∞ = rest mass excluding the influence of gravity:             E∞ = ϒ∞ m0∞ c2 

Therefore : Eg  ≈ - 2 ϒ∞  GM m0∞ / r       

For zero speed at infinity, the potential is double that derived from Newtonian theory. This is due to 

the effect of gravitation on the rest mass. For a non-zero speed at infinity, the deviation from the 

Newtonian potential increases with the speed. 

 

Equation of motion 

The effect of gravitation can be considered as that of an acceleration applied step by step to a 

variable mass at rest. As the potential energy is proportional to the energy of the particle, the motion 

is independent of the initial mass if the initial velocities are identical. 

The fundamental equation of dynamics can be used, bearing in mind that the change in energy 

associated with the change in momentum (i.e. dEp) does not represent the entire change in energy dE 

of the particle. 

Part of the variation in potential energy corresponds to the variation in the particle's rest mass, i.e. :

 ϒdE0   (rest mass of energy dE0 carried at speed v).   

So we have : dEp   = dE - ϒ dE0  

The effect of gravitation on momentum is likened to that of an attractive force FሬԦ   collinear with  r ሬሬԦ:     

 d (mvሬԦ) = ( FሬԦ +  F𝑥  ሬሬሬሬሬԦ) dt   

 vሬԦ d(mvሬԦ) = vሬԦ ( FሬԦ +  F𝑥  ሬሬሬሬሬԦ) dt = FሬԦ drሬሬሬሬԦ + dEx = dE p 

Since :  vሬԦ vሬԦ = v2 ,                  v2 dm + m vሬԦ dvሬԦ  = dEp 

 
30 The introduction (for convenience) of exponential functions in no way prejudges the extension of the laws of 
gravitation outside the weak field domain. 
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In this equation, m corresponds to the total energy of the particle (m = E/c2 ), while dm is related to 

the variation in momentum (dm = dEp /c2 ). Therefore : 

   (v2 /c2) dEp + (vሬԦ dvሬԦ  / c2) E = dEp      (5.8) 

ϒ2= 1/(1- v2 /c2)   →      v2 = c2 (1-1/ ϒ2) and   vሬԦ dvሬԦ  = c2 dϒ/ ϒ3 

(5.8)     →    (1-1/ ϒ2) dEp + (dϒ/ ϒ3) E = dEp     

                                              - dEp + (dϒ/ ϒ) E = 0 

Therefore : dEp   = (dϒ/ ϒ) E                                       (5.9) 

This means that ϒ is a solution to the equation : 

 dϒ/ ϒ = dE/E - ϒ dE0 /E  

It is easy to see that the choice ϒ = E/E0   is appropriate.  This shows that the assumption that the rest 

energy varies is consistent with the concept of total energy. 

The above equation can then be written as : 

 dϒ/ ϒ = dE/E - dE0 /E0 

which corresponds to the derivation of the equation : ϒ = E/E 0.   

Finally : Fdr = dE - ϒ dE0 - dEx = (dE - dEx) - (dE0 /E0) E  

 ≈ -2 (GM/ c2r2) E dr+ (GM/ c2r2) E dr  

 F ≈ - GM E/ c2r2= - ϒ GM E0 / c2r2                                              (5.10) 

For ϒ = 1 we find the Newtonian expression.   

Since ϒ = E/E0, we deduce from equations 5.5 and 5.6 (in the absence of external forces):         

                                               ϒ = ϒ∞ exp (GM/ c2r) ≈ ϒ∞ (1 + GM/ c2r)                                 (5.11) 

 

Sharing the variation in potential energy 

It's easy to check that : 

 ϒ dE0 = dϒ E0               [= -ϒ∞ (GM/ c2r2) exp (GM/ c2r) E0 dr] 

Consequently, the energy exchanged with the gravitational field is shared equally between the 

acceleration effect and the effect of modifying the energy at rest. 

We will retain the above conclusion as a principle and show that equations (5.1) and (5.2) can be 

derived from it. 
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5.1.2.  Principles adopted  

According to the preceding analysis, we adopt the following principles to establish the laws of 

gravitation for a non-zero mass particle in a weak field: 

 First principle: gravitational field and potential energy 

The gravitation created by a gravitational source can be characterised by a gravitational field that 

imparts potential energy to the particles present in it.  

The variation in the potential energy of a particle, of zero or non-zero mass, is proportional to its total 

energy E, calculated in the reference frame linked to the source; it is given by the relation : 

 dEg = 2 (GM/ c2r2) E dr   

Second principle: conservation of energy 

The variation in total energy of a particle is equal to the opposite of the variation in potential energy 

plus the work of external forces, if any: 

 dE = dEx - dEg 

Third principle: the influence of gravitation on a particle's energy and momentum 

The rest energy of a non-zero mass particle varies with its distance from the source.  

In the absence of external forces, the variation in energy associated with rest energy and the variation 

in energy associated with momentum are each equal to and opposite half the variation in potential 

energy.  

Fourth principle: (partial) equivalence between gravitation and acceleration  

The fundamental law of dynamics can be applied to determine the relationship between the variation 

in the particle's momentum and the variation in energy associated with this momentum under the 

effect of the gravitational field.  

 

Application of the principles 

Let's consider the absence of external forces:  

1st + 2nd principle: dE = -dEg = -2 (GM/ c2r2) E dr   

3rd principle: ϒ dE0 = dE/2     

4th principle: E = ϒ E0 (see Equation of motion in paragraph 5.1.1) 

It follows immediately : 

 dE = 2 ϒ dE0 = -2 (GM/ c2r2) ϒ E0   dr  
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   dE0 = - (GM/ c2r2) E0   dr           (i.e. equation 5.2) 

Referring to the equation of motion, we see that : 

 dEp = dE - ϒ dE0 = F dr 

Therefore : F dr = - (GM/ c2r2) E dr       

If Fx is the opposite of the attractive gravitational force and the speed is zero:     

 Fx = GM E0 / c2r2 = GM m0 /r 
2           (i.e. equation 5.1) 

 

5.1.3.  The case of photons. Gravitational spectral shift  

When applied to photons, equation (5.4) on total energy explains : 

- the deflection of light rays by a gravitational source (see sub-chapter 5.3); 

- the gravitational spectral shift (see sub-chapter 5.4 : Pound and Rebka experiment). 

In section 4.2.2 we saw that the frequency of an electromagnetic wave represents both the emission 

frequency of photons and the frequency linked to their energy by the Planck-Einstein relation.  

In accordance with this relationship, the energy-related frequency follows the same law as the total 

energy: 

 dν = - 2 GM/ c2r2 ν dr                                                                                            (5.12) 

In a gravitational field, the frequency related to the energy of a photon varies; it is given by :  

 νg = ν∞ exp (2 GM/ c2r) ≈ (1 + 2 GM/ c2r) ν∞                              (5.12') 

On the other hand, the frequency ν0 at which the wave is emitted (which defines the succession of 

photons) is necessarily invariant ( = ν∞ ), otherwise there would be an accumulation of photons. 

 The energy frequency and the emission frequency therefore become distinct. 

Equation (5.5) on the rest energy disappears since the photon has zero rest mass. 

 

However, at the same time as the spectral shift, the speed of propagation cg of a photon is modified 

as it passes through the gravitational field. 31 

 

In a gravitational field, the wavelength λg of an electromagnetic wave is expressed by the dual relation: 

 λg   = c / νg  = cg / ν0 

 

 
31 This explains the Shapiro effect (Influence of a gravitational field on the transmission time of an 
electromagnetic signal) (see § 5.5). 
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The first term in this relationship corresponds to the "energetic" calculation of the wavelength : 

 c / νg  = h/p    

since :  E (energy) = h νg  and p (impulse) = E /c  32 

The second term corresponds to the kinematic calculation (celerity divided by the emission frequency). 

The products cg ν g and λg νg are invariant across the field.33 

The speed of the wave (and photon) is : 

cg = exp (-2 GM/ c2 r) ≈(1 - (2 GM/ c2 r) c                                       (5.13)       

 

The above leads us to complete the principles set out earlier by writing that, when particles move in 

a gravitational field, the action of gravitation consists of : 

- a change in the total energy of the particles, whether or not they have zero mass ; 

- a change in the momentum of non-zero mass particles and their rest energy; 

- a change in the momentum of zero-mass particles and their speed, which becomes 

less than c. 

 

Comparison with General Relativity 

Given equation (5.12'), the equation linking the frequencies at two points, at distances from the 

gravitational source r1 and r2 , is written : 

 ν2 = ν1 (1 + 2 GM/ c2r2)/ (1 + 2 GM/ c2r1)     (5.14) 

In the context of general relativity, the equation obtained is : 

(GR) ν2 = ν1 ((1 - 2 GM/ c2r1)/ (1 - 2 GM/ c2r2))1/2 

or, in low-field conditions : 

(GR) ν2 = ν1 ((1 + GM/ c2r 2)/ (1 + GM/ c2r1))                 (5.14') 

The frequency difference is therefore twice as small for general relativity. 

 

 
32 We consider that the impulse remains equal to E/c even though the speed of the wave is no longer equal to 
c. 
33 We can also explain this result in the following way: as mentioned in paragraph 4.2.2, if the speed of the 
wave remained equal to c, its power would vary as the square of its frequency; this would imply that, as the 
wave progressed towards the gravitational source, the number of photons elapsed per unit time would 
increase, which cannot be the case. 
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Let us now consider a photon source located at distance r1 , emitting photons of frequency νS1 . The 

same photon source located at distance r2 would emit photons of frequency νS2 , given by equation : 

 νS2 = νS1 (1 + GM/ c2r2 )/ (1 + GM/ c2r1 )                  (5.15) 

This is because the energy of the sources, and therefore that of the photons emitted, is shifted in 

accordance with equation (5.5) concerning energies at rest. 

The equation giving the frequency ν2  at r2 of the photon emitted at r1 as a function of the frequency 

νS2 is as follows: 

 ν2 = νS2 (1 + GM/ c2 r2)/ (1 + GM/ c2 r1)                

We can see that this equation is identical to equation (5.14') given by General Relativity (which accepts 

νS2 = νS1). 

This reasoning will be used to explain the result of the Pound and Rebka experiment (see § 5.4.). 

 

5.1.4.  Case of the action of the gravitational field alone. The theorem of angular momentum 

 

 

 

 

 

 

 

Let's consider a plane motion, which is the case for planetary orbits. If the particle is not subject to any 

force other than the centripetal force linked to the gravitational field, we can solve the problem using 

the theorem of angular momentum. 

Let us denote by pሬԦ = m vሬԦ  the momentum. According to the fundamental law of dynamics d pሬԦ and  rԦ  

are collinear. On the other hand vሬԦ  and drԦ  are also collinear (since : vሬԦ =  drԦ/dt ). 

Therefore : d (p ሬሬሬԦ ⋀ rԦ ) = d pሬԦ ⋀ rԦ  + pሬԦ ⋀ drԦ  = 0     

from which it follows : m v r sin (vሬԦ, rԦ) = Constant                    (5.16) 

Equations (5.2) and (5.4) give v as a function of r and equation (5.16) gives the angle Ψ of vሬԦ and of  rԦ. 

This result is applied below to the determination of Mercury's perihelion advance. 

r 

v 

φ 

x 

y 

ψ 



35 
 

It can also be applied to the calculation of the curvature of light rays in a gravitational field, assuming 

that the variation in photon impulse is directed towards the source of the field (cf. § 5.3).  

 

5.2.  Calculating Mercury's perihelion advance 

5.2.1.  The polar coordinates of the planet in a reference frame related to the sun are (r, φ). 

The radial and angular speeds are : 

 dr/dt = v cos ψ               dφ/dt = (v/r) sin ψ 

(5.16)     →                           ϒ m0 v r sin ψ = A (constant)                                             (5.16') 

Starting from φ = 0 when the planet is at perihelion, we look for the value of φ when it reaches 

aphelion. Using the above relationships, we can write : 

    φ = ∫(dφ/dt) dt = 𝐴 ∫ dt/(ϒ m0 r2) = 𝐴 ∫(dr/(ϒ m0 r2))(dt/dr) = 𝐴 ∫(dr/(ϒ m0 r2))/ (v cos ψ)  

 (v sin ψ)2 = (A/( ϒ m0 r))2    →   v cos ψ = (v2 - (A/( ϒ m0 r))2)1/2     

And finally :                         φ = 𝐴 ∫(dr/r2)/ ((ϒ m0 v)2 - (A/r)2)1/2      

 φ =  - ∫ d(1/r)/((ϒ m0 v/A)2 - (1/r)2)1/2                               (5.17) 

 

5.2.2.  Equation (5.11) can also be written: 

 lnϒ = GM/ c2 r + constant                                                                  (5.18) 

For Mercury the v/c ratio varies from 1.3 10-4 to 2 10-4 between aphelion and perihelion. We 

will continue the calculation using limited developments of order 2 in v/c :  

 ϒ = 1 + (v/c)2/2 + 3 (v/c)4/8 

 ln ϒ = (v/c)2/2 +  (v/c)4/4 

(5.18)   →   v2 + v4 /2c2 = = 2 GM/ r + B (constant)                   (5.19) 

Let :  X = 2 GM/r + B 

Let's rewrite equation (5.17) with this change of variable, limiting ourselves to order 2 in X 

 [because the ratio (X2 /c2)/X is of the same order as (v/c)2 ]:   

 (5.19)   →                           v2 = X -X2 /2 c2 

                                             ϒ2 v2 = v2 + v4/c2 =  X + X2/2c2 

On the other hand, equation (5.5) gives : 

 E0 = E0∞ exp(GM/ c2 r) 
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or: m0 = m∞ (1 + GM/ c2r) = m∞ (1 + (X - B)/2c2) 

[we limit ourselves to the term in X because of the multiplication by ϒ2 v2 to be carried out afterwards] 

 m02 = m∞2 (K + X /c2) 

 m02 ϒ2 v2 = m∞2 (K + X /c2) (X + X2/2c2) = m∞2 (K X+ 3X2/2c2) 

 (ϒ m0 v/A)2 - (1/r)2 = (m∞/A)2(K X+ 3X2/2c2) – (X-B)2/(2GM)2              (5.20) 

The constant A can be calculated from the distance to the sun and the speed at perihelion or aphelion, 

where the velocity vector is perpendicular to the radius vector: 

 ψ = π/2       so     sin ψ = 1     and        A = ϒi mi vi ri 

 m∞/A = m∞/(ϒi mi vi ri)  ≈ 1/(vi ri) 

The second member of (5.20) can be written as a second degree polynomial in X : 

                                            (ϒ m0 v/A)2 - (1/r)2 =  - (1/(2GM)2 – 3/(2c2 vi
2 ri

 2))X2 + P X + Q          

There are two constants C and D such that, with the change of variable Y = X - C, we can write : 

                                             (ϒ m0 v/A)2 - (1/r)2 =   (1/(2GM)2 – 3/(2c2 vi2 ri 2))(D2 - Y2)             

                                                                                  =   (1/(2GM)2 )(1 – 6 (GM)2/(c2 vi
2 ri

 2))(D2 - Y2)         

 Furthermore: 1/r = (X - B)/2GM   →  d(1/r) = dX/2GM = dY/2GM   

Given the two expressions above, equation (5.17) becomes : 

  φ =  - ∫ dY/(1 – 6 (GM)2/(c2 vi2 ri 2))1/2/(D2 - Y2)1/2        

 6 (GM)2/(c2 vi2 ri 2)  is very small compared with 1, so we can write : 

φ =  -  (1 + 3 (GM)2/(c2 vi2 ri 2)) ∫ dY/(D2 - Y2)1/2           

Therefore :      φ =  -  (1 + 3 (GM)2/(c2 vi2 ri 2)) arc sin (Y/D) + Constant  (5.21) 

 

5.2.3.  We have seen that the passage to perihelion and aphelion is characterised by :  ϒi mi vi ri  = A,  

therefore:                          (ϒi mi vi/A)2 - (1/ri)2 = 0 

The result is: D2 - Y2 = 0, or :        {
Y/D =  1 au périhélie
Y/D =  − 1 à l’aphélie

   

The variation in φ between perihelion and aphelion is therefore equal to: 

φa - φp  =  -  (1 + 3 (GM)2/(c2 vi2 ri 2)) (arc sin (-1) - arc sin (1)) = (1 + 3 (GM)2/(c2 vi2 ri 2)) π 

For one revolution, the offset is (with vi and ri at perihelion or aphelion):       

 Δφ  =   6 π (GM)2/(c2 vi2 ri 2)     (5.22) 



37 
 

This formula is equivalent to that given by General Relativity (a = semi-major axis, e = eccentricity):

  

(GR) Δφ = 6 π GM/ c2a(1- e )2                             (5.23) 

Application to Mercury        

GM = 132 712 440 018 km3 s-2 

c = 299 792 km s-1 

vi = 58,98 km s-1  (perihelion) 

ri = 46 106 km (perihelion) 

Δφ = 5.018 10-7 radians 

        = 0.1035 seconds 

For one century (415 revolutions) : 

 Δφ = 42.95 arc seconds  

 

 5.3.  Curvature of light rays 

 

   

 

 

 

Consider the path of a photon in the vicinity of the Sun, shown in the figure above.  

By replacing the momentum ϒm0 v by E/c  for the photon, equation (5.17) is written : 

 φ =  - ∫ d(1/r)/((E/Ac)2 - (1/r)2)1/2                                               (5.24) 

This assumes that the energy of the photon is affected by the gravitational field in the same way as 

the total energy of a massive particle. 

 

We check that GM/c2r  is small compared to 1 (equal to 2.12 10-6 for r = R).  

Equation (5.6) is therefore valid: 

 E = E∞ exp (2 GM/ c2r) 

According to (5.16') : E/Ac = 1/ r sin ψ 

For r = R (radius of the sun),    Ψ = π/2,     sin Ψ = 1  

So : ER /Ac = E∞ exp (2 GM/ c2R) = 1/ R 

 E∞ /Ac = (1/R) exp (-2 GM/ c2R) 

S 

2 R 
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                                        E/Ac = (1/R) exp (2 GM (1/r - 1/R)/ c2) = (1/R) (1 + 2 GM (1/r - 1/R )/ c2) 

(5.24)  →   φ =  - ∫ d(1/r)/((1/R)2(1 +4 GM (1/r - 1/R )/ c2) - (1/r)2)1/2   

 φ =  - ∫ d(1/r)/((1/R)2(1 - 2 GM/ c2R)2 - (1/r - 2 GM/ c2R2)2)1/2   

 φ =  - ∫ d(1/r)/(( 1/R - 2 GM/ c2R2)2 - (1/r - 2 GM/ c2R2)2)1/2   

Integrating with respect to (1/r - 2 GM/ c2R2) gives : 

 φ =  arc sin((1/r - 2 GM/ c2R2)/ (1/R - 2 GM/ c2R2)) + Constant. 

For r varying from + ∞ to R the variation of φ is : 

 φR - φ∞ = arc sin 1 - arc sin (- 2 GM/ c2R) 

                                                             = π/2 + 2 GM/ c2R 

At the point closest to the centre of the sun, the angle of deviation of the trajectory is (2 GM/ c2R); 

this must be doubled to obtain the total deviation: 

 Δφ = 4 GM/ c2R                                             (5.25) 

This is the value provided by the theory of General Relativity and verified by experiment:   

 Δφ = 1.75 arc seconds  

 

5.4.  Pound and Rebka experiment (spectral gravitational effect) 

                 Remember: we are in the case where GM/ c2r is small compared to 1. 

We will show that the relation (5.14), giving the gravitational spectral shift, remains compatible with 

the results of the Pound and Rebka experiment if this experiment is interpreted within the framework 

of the new approach we are proposing. 

The principle behind this experiment is to detect the effect of the Earth's gravity on photons: 

Two samples of iron 57Fe (emitter of gamma photons) are placed in a tower at a vertical distance 

sufficient to create a detectable gravitational effect (22.5 metres). By de-excitation, the source sample 

emits photons in a very narrow energy band; these photons are absorbed by the other sample if their 

frequency has remained very close to their emission frequency (excitation at the resonance 

frequency).  

 Because of the Mössbauer effect, the emission or absorption of a photon disturbs the variation in the 

frequency of this photon, due to the gravitational effect, to an extent sufficiently small that it remains 

detectable in the following way: by setting the transmitter in motion, we create a Doppler effect which 

counterbalances the gravitational frequency variation so as to allow the effective absorption of the 

photons. All we need to do is measure the Doppler frequency shift. 
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Let's consider the case of the transmitter placed on the ground. Let us denote by :  

 νS the frequency of the photons emitted, 

 νh the resonant frequency at the top of the tower (height h) 

 νS' the frequency of the photons arriving at the receiver, 

 v the relative velocity between transmitter and receiver.  

Because of the low relative velocity, the energy variation factors linked to the ϒ parameter (of 

order v2/c2 whereas the Doppler effect is of order v/c) are neglected. 

Since the receiver is offset by the height h from the transmitter, the energy of the atoms in the two 

devices is shifted in accordance with equation (5.5) for rest energies; the same applies to the energy 

and therefore the frequency of the emitted and resonant photons. Equation (5.15) must therefore be 

used: 

      ν2  =  ν1  (1 +  GM/ c2r2)/ (1 +   GM/ c2r1)      (5.26) 

which can be written as :      ν2 = ν1 (1 + (GM/ c2 )(1/r2 - 1/r1 ))  

In this case:      r2 = r1 +h, so:          1/r2 - 1/r1 = - h/ r1 (r1 + h) ≈ - h/r12 

The relationship between the frequencies of the emitted and resonant photons is : 

     νh = νS (1-  GM h/ c2 r12) 

Excluding the Doppler effect, the frequency shift of the emitted photon is given by equation (5.14), 

which, using the same reasoning as above, leads to : 

 νS’= νS (1 - 2GM h/ c2 r12) 

Therefore: νS’/ νh = (1- GM h/ c2 r1
2) 

The Doppler compensation must be such that : 

  (1+v/c) νS’/ νh  = 1 

which leads to :  v/c = GM h/ c2 r1
2 

 v = g h/ c                                     which is the result of the experiment. 
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5.5.  Shapiro effect 

Let's take a look at the travel time of an electromagnetic signal between two points A and B, 

depending on whether or not this travel is influenced by the presence of a gravitational field. 

 

We design by : 

- rA  : the radial coordinate of A, 

- rB  : the radial coordinate of B, 

- r0  : the radial coordinate at the point P on the 

trajectory closest to the source of the gravitational 

field. 

 

       We assume that GM/c2 r is small compared to 1 for any value of r. 

We have seen (cf. § 5.1.3) that the speed of an electromagnetic wave is modified by the presence of 

the gravitational field. Its speed is given by equation (5.13) : 

      cg = (1 - (2 GM/ c2r)) c  

We can write:   cg = c (1 - Δc/c)       

with :                                   Δc/c = (2 GM/c2r)                                                                                                 (5.27)       

 

To calculate the journey time, let's go back to the information given at the beginning of paragraph 

5.2.1.  

dr/dt = cg cos ψ  →    t = ∫(1 /cg) dr/cosψ                                                                                      (5.28)  

 t = (1/c)∫(1 +  Δc/c) dr/cos Ψ                                  (5.28') 

The journey time is made up of two terms: 

- the first [t = (1/c)∫ dr/cos Ψ ] corresponding to the travel time at speed c ; 

- the second [ Δt' = (1/c)∫(Δc/c) dr/cos Ψ ] representing the additional time due to the 

decrease in the speed of light.    

 

Term corresponding to the variation in distance : 

Since gravitation bends the trajectory of light rays, we expect the travel time between two points to 

increase compared with what it would be in the absence of a gravitational field (straight line travel). 

Referring back to the beginning of sub-chapter 5.3, we see that equations (5.6) and (5.16') allow us to 

express sin Ψ in the form : 

r0   

A 

B 

P 

rA   

rB   
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 sin Ψ = (r0 /r) exp (2 GM (1/ r0 - 1/r)/ c2 

Let: K = 2 GM/ c2r0   et  X = r0/r 

 sin Ψ = X (1 + K (1 - X)) 

 cos Ψ =  (1 -  X2)1/2 (1 - 2 K X2/(1 + X)) 

 1/ cos Ψ =  (1 -  X2)-1/2 (1 + K X2/(1 + X)) 

Since:   dr = (-r0 /X2 ) dX 

[t =  (1/c)∫ dr/cos Ψ ]    →       t =  (1/c) ∫(1 - X2)-1/2 dr  -  (K r0/c) ∫(1 - X2)-1/2/(1 + X)  dX      (5.29) 

The straight line travel time at speed c is given by: 

  t0 =  (1/c) ∫ r (r2 – r0
2)-1/2 dr   =    (1/c) ∫(1 - X2)-1/2 dr    

and the increase in duration by:    

 Δt = -  (K r0/c) ∫(1 - X2)-1/2/(1 + X) dX         

By changing the variable X = 1/ch Y , we obtain :  

 Δt = 2 GM/c 3∫ d Y / (1 + ch Y) 

By integrating, we get : Δt = (2 GM/c3 ) (ch Y - 1)/ sh Y  

or: Δt = (2 GM/c3 ) (eY -1)/(eY +1)                                                                    (5.30) 

From A to B, the variation in duration is the sum of the variations from A to P and from B to P. 

             If rA and rB  are sufficiently larger than r0  , we can assume that at points A and B:  

                                              (eY -1)/(eY +1)≈ 1 

At point P, we have:         ch Y = 1,   Y =0 and     (eY -1)/(eY +1) = 0 

Finally: ΔtAB = 4 GM/c 3                   (5.31) 

 

Term corresponding to speed variation: 

Referring to equations (5.28') and (5.29) we see that we can write :  

Δt’=  (1/c) ∫(1 - X2)-1/2 (Δc/c) dr   

(5.27)  →                      Δt’=-(2GM/c3)∫(1-X2)-1/2X-1dX   (lower order terms are neglected)           

 

Assuming X = 1/ch Y, the above equation reduces to :  

 Δt’=   (2GM/c3) ∫ dY   
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By integrating : Δt’ =  (2GM/c3) arg ch(r/r0)                                    (5.32) 

           If rA and rB are sufficiently larger than r0  , then:          arg ch(rA/r0)   ≈  ln (2rA/r0) 

                             arg ch(rB/r0)   ≈  ln (2rB/r0) 

Since arg ch(1) = 0:       Δt'AB = (2GM/c3 ) ln (4rA rB /r0
2 )                                 (5.33) 

 

 

Finally, summing equations (5.31) and (5.33) gives the full Shapiro effect (for a one-way AB): 

 ΔTAB = (2 GM/c3)(ln(4 rArB/r02) + 2)                                (5.34) 

This effect is not exactly identical to that given by General Relativity  :  

(GR) ΔTAB = (2 GM/c3)(ln(4 rArB/r02) + 1)                   (5.35) 

The secondary term corresponding to the variation in distance is doubled in (5.34) compared with 

(5.35). It should be noted that, under the conditions of the experiments carried out, this secondary 

term is too small compared with the main term to be detected.  

We will explain this discrepancy in sub-chapter 5.6 below.     

 

 

5.6.  Comparison with the theory of general relativity 

We have just examined the main experiments considered as a basis for verifying the theory of general 

relativity. We have seen that, under weak gravitational field conditions, the predictions of GR and those 

made using our new approach are identical except for the gravitational spectral shift and the secondary 

term of the Shapiro effect. 

This similarity is explained below. 

 

5.6.1.  Schwarzschild metric  

In the context of general relativity, the Schwarzschild metric is a solution of Einstein's equations. It 

describes the geometry of space-time deformed by the gravitational field outside an isolated, 

spherically symmetric, static (non-rotating), uncharged body surrounded by vacuum. 

For a body of mass M, this metric is defined outside a sphere of radius : 

          RS = 2 GM/c2                                                                                                                                                                               (5.37) 

 

https://fr.wikipedia.org/wiki/Relativit%C3%A9_g%C3%A9n%C3%A9rale
https://fr.wikipedia.org/wiki/%C3%89quation_d%27Einstein
https://fr.wikipedia.org/wiki/Espace-temps
https://fr.wikipedia.org/wiki/Champ_gravitationnel
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Using the spherical coordinates (ct, r, θ, φ), the infinitesimal distance ds related to the metric is 

given by the relation :  

 ds2 = (1 - RS/r) c2 dt2 - (1 - RS/r)-1 dr2 – r2 (dθ2  +  sin2θ dφ2)               (5.38) 

In distorted space-time, a particle subject only to the action of gravitation follows an inertial motion 

and moves along a geodesic line: 

- of the "light" type, characterised by ds2 = 0 , for a particle of zero mass (photons) ; 

- of the "time" type, characterised by ds2 = c2 dτ2 , for a particle of non-zero mass 

(dτ being the proper time interval). 

The study of motion is based on the conservation, along geodesics, of quantities assimilated to energy 

and angular momentum 34 . 

 

Plane trajectory of a material particle (orbit of a planet) 

The frame of reference is chosen such that the trajectory lies in the plane θ = π/2 : 35 

- the first quantity conserved is similar to the energy per unit mass outside the gravitational 

attraction (at infinity) 36 :  

 ε = c2 (1 -RS /r) (dt/dτ)                                                                                           (5.39) 

- the second is the angular momentum per unit mass (at infinity): 

 l = r (r dφ/dt) (dt/dτ) = r v sin ψ (dt/dτ)                                                    (5.40) 

 

Let's calculate (dt/dτ) from equation (5.38) and relations :  

  dr/dt = v cos ψ and dφ/dt = (v/r) sin ψ 

(5.38) →   dτ2 = ((1 - RS /r) - (1 - RS /r)-1 (v2 /c2 ) cos2 ψ)- (v2 /c2 ) sin2 ψ) dt 2 

 dτ2 = ((1 - RS /r) - (v2 /c2 ) - (RS /r) (v2 /c2) cos2 ψ) dt2 

 dτ2 = ((1 - v2 /c2 ) - (RS /r)(1 + (v2 /c2) cos2 ψ)) dt2 

 

With ϒ2 = 1/(1 - v2 /c2) :  

 dτ2 = (1/ ϒ2)(1- ϒ2 (RS /r)(1 + (v2 /c2) cos2 ψ)) dt2 

And finally: dt/dτ = ϒ (1+ ϒ2 (RS /r)(1 + (v2 /c2 ) cos2 ψ)/2)  

 
34 This conservation can be deduced from the symmetries of space-time. See, for example, Eric Gourgoulhon's 
2013-2014 General Relativity course (2ème year of the "Research, Astronomy and Astrophysics" master's degree 
at Paris Observatory and Universities of Paris 6, 7 and 11), available on the Internet.  
35 see figure § 5.1.4. 
36 Remember that GR considers rest mass to be invariant. 
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 RS /r is small compared to 1. Let's also consider the non-relativistic case (v/c small compared to 1): 

 dt/dτ ≈ ϒ (1+ RS /2r) 

Relations (5.39) and (5.40) can be written as : 

 ε = c2 ϒ (1- RS /2r)                                 (5.39') 

 l = ϒ (1- RS /2r) r v sin ψ                                  (5.40') 

The conservation condition for these quantities leads to the two equations below: 

 ϒ = ϒ∞ (1- RS /2r)
-1                                                                                                                                                

 (5.41) 

 ϒ (1+ RS /2r) r v sin ψ = A constant                                                              (5.42) 

 

Radial displacement of a photon (gravitational spectral shift) 

Conservation of the energy quantity along the radial "light" geodesic followed by the photon gives : 

 Ephoton =  (1 -  2 GM/ c2r)-1/2 E∞
                                (5.43) 

Furthermore, with ds = 0, dθ = 0 and dφ = 0, equation (5.38) allows us to express the (radial) speed 

of the photon in reference frame (ct, r, θ, φ) : 

 cg = dr/dt = (1- RS /r)c 

 

Non-radial trajectory of a photon (deflection of light rays and the Shapiro effect) 

The trajectory of a photon remains in a plane. The calculations are based on non-radial "light" 

geodesics. The components of the photon's 4-impulse are deduced from the quantities conserved. 

Using the metric then leads to the differential equation of the photon trajectory in the plane θ = π/2.  

As with the radial trajectory, the photon speed can be determined from (5.38) : 

 cg2 /c2 = (1 - RS /r)/(1 + (RS /r) cos2 ψ) = 1 - RS /r - (RS /r) cos2 ψ 

                                                         = 1 - 2 RS /r + (RS /r) sin2 ψ 

 cg /c = 1 - R /rS + (RS /r) sin2 ψ/2                                                                (5.44) 
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5.6.2.  Explanation of similarities and differences 

 

Fundamental differences between the two approaches 

The first thing to remember is the following difference in concept: 

- General relativity treats the problem kinematically. The curvature of space-time accelerates or 

slows down particles.37 The energy of the source of the gravitational action defines the 

parameterisation of the metric.  The energy variations of the particle subjected to this action 

are not explicit.  

- The new approach proposed in this note focuses on energy with the principle of conservation 

of total energy. A real exchange of energy takes place between the particle and the 

gravitational field.38 This approach is made possible by abandoning the principle of invariance 

of energy at rest. 

The other fundamental difference is precisely the difference in the concept of rest energy. In weak 

field conditions, the total energy involved is doubled in the approach we are proposing compared with 

Newtonian gravitation. 

 

Particle movement 

The two approaches give identical predictions for the motion of particles placed in a gravitational field 

(in weak field conditions).  

This is because : 

- the Lorentz factor ϒ is expressed in the same way: equations (5.11) and (5.41) are identical; 

- the curvature of space-time39 is equivalent to equating the value of the angular momentum of 

a particle to the one we propose: equations (5.16') and (5.42) are identical if we take into 

account the law giving the increase in rest energy in the gravitational field (5.5); 

- As far as photons are concerned, both approaches assume that they are subject to 

gravitational action in the same way as material particles; 

- both approaches lead to the same variation in photon speed in the gravitational field for 

trajectories close to radial trajectories. 

 

 

 
37 In the same way that a simple change of Galilean reference frame modifies the speed of a particle. 
38 This is explained in the note entitled "Gravitational Field, Fundamental Principle of Dynamics and Quantum 
Mechanics". 
39 With the Schwarzschild metric. 
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As far as the Shapiro effect is concerned, the difference noted in sub-chapter 5.5 is easily explained by 

equation (5.44): 

This equation gives the complementary term [+ (RS /r) sin2 ψ /2] to equation (5.13) giving the speed 

of a photon in the gravitational field. If we complete the calculation in sub-chapter 5.5 (equation 5.27) 

taking into account the above term, we find a decrease in travel time equal to : 

  Δt’1=(GM/c3)∫(1-X2)-1/2 X dX                 (taking into account that: sinψ ≈ X) 

So, integrating: Δt’1= - (GM/c3)(1 -X2) ½ 

For a one-way AB trip: Δt’1AB  = - 2GM/c3 

This difference is the same as that noted in sub-chapter 5.5. 

                                                              

Gravitational spectral shift 

As explained in section 5.1.3, the gravitational spectral shift given by the GR is twice as small as that 

calculated using our approach. 

This is a direct consequence of the fundamental difference in the concept of energy mentioned at the 

beginning of this paragraph. Since frequency is directly linked to energy by the Planck-Einstein relation,  

velocity does not come into play and curvature does not come into play to correct the discrepancy. 

With regard to the Pound and Rebka experiment, the predictions of the two approaches are identical 

because the difference in total energy is compensated for by taking into account in our approach the 

difference in rest energies between transmitter and receiver (leading to the same difference in 

frequencies).40 

 

 

 

 

 

 

 

 

 
40 In paragraph 4.1.3 (Doppler effect), we already considered that the energy of photons emitted by a source 
varies as the energy of the source varies. 


